4.7 自由空間中のダイアディック・グリーン関数の対称性

 自由空間中のダイアディック・グリーン関数$\DYA{G}_{e0}$,$\DYA{G}_{m0}$は,先に示したように, \begin{eqnarray} \DYA{G}_{e0} (\VEC{r},\VEC{r}') &=& \left( \DYA{I} + \frac{1}{k^2} \nabla \nabla \right) G_0 (\VEC{r},\VEC{r}') \\ \DYA{G}_{m0}(\VEC{r},\VEC{r}') &=& \nabla \times \Big( \DYA{I} G_0 (\VEC{r},\VEC{r}') \Big) \label{eq:gm00} \end{eqnarray} あるいは, \begin{gather} \DYA{G}_{m0}(\VEC{r},\VEC{r}') = \nabla G_0(\VEC{r},\VEC{r}') \times \DYA{I} \label{eq:gm000} \end{gather} ここで,$G_0(\VEC{r},\VEC{r}')$は自由空間中のスカラ・グリーン関数を示し, \begin{eqnarray} G_0 (\VEC{r},\VEC{r}') &=& \frac{e^{-jkR}}{4\pi R} \nonumber \\ &=& G_0 (\VEC{r}',\VEC{r}) \end{eqnarray} ただし, \begin{eqnarray} R &\equiv& |\VEC{r}-\VEC{r}'| \nonumber \\ &=& \sqrt{(x_1-x_1')^2 + (x_2-x_2')^2 + (x_3-x_3')^2} \end{eqnarray} まず, \begin{eqnarray} \nabla G_0 (\VEC{r},\VEC{r}') &=& \nabla G_0 (\VEC{r}',\VEC{r}) \nonumber \\ &=& \frac{\partial G_0}{\partial R} \nabla R \nonumber \\ &=& \frac{\partial G_0}{\partial R} (-\nabla ' R) \nonumber \\ &=& - \nabla ' G_0 (\VEC{r}',\VEC{r}) \end{eqnarray} ただし, \begin{eqnarray} \nabla R &=& \frac{\VEC{r} - \VEC{r}'}{R} \nonumber \\ &=& -\nabla ' R \end{eqnarray} さらに, \begin{eqnarray} \nabla \nabla G_0 (\VEC{r},\VEC{r}') &=& -\nabla \nabla ' G_0 (\VEC{r}',\VEC{r}) \nonumber \\ &=& -\nabla \left( \frac{\partial G_0}{\partial R} (\nabla ' R) \right) \nonumber \\ &=& \nabla ' \left( \frac{\partial G_0}{\partial R} (\nabla ' R) \right) \nonumber \\ &=& \nabla ' \nabla ' G_0 (\VEC{r}',\VEC{r}) \end{eqnarray} ただし, \begin{eqnarray} \nabla ' \nabla R &=& \nabla ' \left( \frac{\VEC{r} - \VEC{r}'}{R} \right) \nonumber \\ &=& -\nabla \left( \frac{\VEC{r} - \VEC{r}'}{R} \right) \nonumber \\ &=& -\nabla \nabla R \end{eqnarray} さて, $\DYA{G}_{e0} (\VEC{r},\VEC{r}')$ において,$\VEC{r}$,$\VEC{r}'$を交換すると, \begin{gather} \DYA{G}_{e0} (\VEC{r}',\VEC{r}) = \left( \DYA{I} + \frac{1}{k^2} \nabla ' \nabla ' \right) G_0 (\VEC{r}',\VEC{r}) \end{gather} ここで, $\nabla \nabla G_0 (\VEC{r},\VEC{r}') = \nabla ' \nabla ' G_0 (\VEC{r}',\VEC{r})$より, \begin{eqnarray} \DYA{G}_{e0} (\VEC{r}',\VEC{r}) &=& \left( \DYA{I} + \frac{1}{k^2} \nabla \nabla \right) G_0 (\VEC{r},\VEC{r}') \nonumber \\ &=& \DYA{G}_{e0} (\VEC{r},\VEC{r}') \end{eqnarray} 転置をとると, \begin{eqnarray} \Big( \DYA{G}_{e0} (\VEC{r}',\VEC{r}) \Big) ^T &=& \left\{ \left( \DYA{I} + \frac{1}{k^2} \nabla ' \nabla ' \right) G_0 (\VEC{r}',\VEC{r}) \right\}^T \nonumber \\ &=& \DYA{G}_{e0} (\VEC{r}',\VEC{r}) \end{eqnarray} ただし, $\big( \DYA{I} \big) ^T = \DYA{I}$.また, \begin{eqnarray} \Big( \nabla ' \nabla ' G_0 (\VEC{r}',\VEC{r}) \Big) ^T &=& \left( \sum _{i=1}^3 \sum _{j=1}^3 \frac{\partial ^2 G_0}{\partial x_i' \partial x_j'} \VEC{i}_i \VEC{i}_j \right) ^T \nonumber \\ &=& \nabla ' \nabla ' G_0 (\VEC{r}',\VEC{r}) \end{eqnarray} これより,次のように$\DYA{G}_{e0}$についての対称性(symmetrical property)が得られる. \begin{gather} \Big( \DYA{G}_{e0} (\VEC{r}',\VEC{r}) \Big) ^T = \DYA{G}_{e0} (\VEC{r},\VEC{r}') \end{gather} 次に, $\DYA{G}_{m0} (\VEC{r},\VEC{r}')$ についても$\VEC{r}$,$\VEC{r}'$を交換し,式\eqref{eq:gm00}より, \begin{eqnarray} \DYA{G}_{m0}(\VEC{r}',\VEC{r}) &=& \nabla ' \times \Big( \DYA{I} G_0 (\VEC{r}',\VEC{r}) \Big) \nonumber \\ &=& \nabla ' G_0 \times \DYA{I} \nonumber \\ &=& -\nabla G_0 \times \DYA{I} \nonumber \\ &=& -\nabla \times \Big( \DYA{I} G_0 (\VEC{r},\VEC{r}') \Big) \nonumber \\ &=& -\DYA{G}_{m0}(\VEC{r},\VEC{r}') \end{eqnarray} ここで,ダイアディクス公式 $(\VEC{a} \times \DYA{F})^T \cdot \DYA{b} = -\DYA{F}^T \cdot ( \VEC{a} \times \DYA{b} )$より, \begin{align} &(\nabla ' G_0 \times \DYA{I})^T \cdot \DYA{I} = -\DYA{I}^T \cdot ( \nabla ' G_0 \times \DYA{I} ) \nonumber \\ &(\nabla ' G_0 \times \DYA{I})^T = -\nabla ' G_0 \times \DYA{I} \end{align} また,$\DYA{G}_{m0}$の転置は,式\eqref{eq:gm000}より, \begin{eqnarray} \big( \DYA{G}_{m0} (\VEC{r}',\VEC{r}) \big) ^T &=& \big( \nabla ' G_0 \times \DYA{I} \big) ^T \nonumber \\ &=& -\nabla ' G_0 \times \DYA{I} \nonumber \\ &=& - \DYA{G}_{m0} (\VEC{r}',\VEC{r}) \end{eqnarray} したがって,次のように$\DYA{G}_{m0}$についての対称性が得られる. \begin{gather} \Big( \DYA{G}_{m0} (\VEC{r}',\VEC{r}) \Big) ^T = \DYA{G}_{m0} (\VEC{r},\VEC{r}') \end{gather}