5.4 電界指向性のフーリエ級数展開

 指向性関数 $g(u)$ を複素フーリエ級数展開するため, \begin{eqnarray} u &=& \frac{\pi D}{\lambda} \sin \theta = \frac{\pi D}{\lambda} w \\ w &=& \sin \theta \end{eqnarray} とおき,周期を $T=2$ として, \begin{gather} g(w) = \sum_{n=-N_b}^{N_b} b_n e^{jn\pi w} \end{gather} いま,$g(w) \ (-1 \le \sin \theta \le 1)$ が与えられれば, \begin{align} &\frac{1}{T} \int _{-1}^1 g(w) e^{-jm \pi w} dw = \sum_{n=-N_b}^{N_b} b_n \frac{\sin (n-m)\pi}{(n-m)\pi} = b_m \nonumber \\ &\therefore b_n = \frac{1}{2} \int_{-1}^1 g(w) e^{-jn \pi w} dw \end{align}

有限範囲で一様な電界指向性

 電界指向性 $g(w)$ が対称な場合,$b_{-n} = b_n$より, \begin{eqnarray} g(u) &=& \sum_{n=-N_b}^{N_b} b_n e^{jn\pi w} \nonumber \\ &=& \sum_{n=-N_b}^{-1} b_n e^{jn\pi w} + b_0 + \sum_{n=1}^{N_b} b_n e^{jn\pi w} \nonumber \\ &=& \sum_{n'=1}^{N_b} b_{-n'} e^{j(-n')\pi w} + b_0 + \sum_{n=1}^{N_b} b_n e^{jn\pi w} \nonumber \\ &=& b_0 + \sum_{n=1}^{N_b} 2 b_n \cos (n \pi w) \end{eqnarray} 電界指向性が $(-1 \lt ) -\alpha \le w \le \alpha ( \lt 1)$ の範囲で $g=1$(一定)のとき,展開係数 $b_n$ は, \begin{eqnarray} b_n &=& \frac{1}{2} \int_{-1}^1 g(w) e^{-jn \pi w} dw \nonumber \\ &=& \frac{1}{2} \int_{-\alpha}^\alpha e^{-jn \pi w} dw \nonumber \\ &=& \alpha \frac{\sin (n\pi \alpha)}{n\pi \alpha} \\ b_0 &=& \alpha \frac{\sin (0 \cdot \pi \alpha)}{0 \cdot \pi \alpha} = \alpha \end{eqnarray}

電界指向性のフーリエ変換

 電界指向性 $g(u)$ をフーリエ変換すると波源分布 $e(x)$ が得られ, \begin{eqnarray} e(x) &=& \frac{1}{\pi D} \int_{-\infty}^\infty g(u) e^{-ju\bar{x}} du \nonumber \\ &=& \frac{1}{\pi D} \frac{\pi D}{\lambda} \int_{-1}^1 g(w) e^{-j\frac{\pi D}{\lambda}w \bar{x}} dw \nonumber \\ &=& \frac{1}{\lambda} \int_{-1}^1 \left( \sum_{n=-N_b}^{N_b} b_n e^{jn\pi w} \right) e^{-j\frac{\pi D}{\lambda}w \bar{x}} dw \nonumber \\ &=& \frac{1}{\lambda} \sum_{n=-N_b}^{N_b} b_n \int_{-1}^1 e^{j(n\pi - \frac{\pi D}{\lambda}\bar{x})w} dw \nonumber \\ &=& \frac{2}{\lambda} \sum_{n=-N_b}^{N_b} b_n \frac{\sin (n-\frac{D}{\lambda}\bar{x})\pi}{(n-\frac{D}{\lambda}\bar{x})\pi} \nonumber \\ &=& \frac{2}{\lambda} \sum_{n=-N_b}^{N_b} b_n \frac{\sin (\frac{D}{\lambda}\bar{x}-n)\pi}{(\frac{D}{\lambda}\bar{x}-n)\pi} \end{eqnarray} さらに,$b_{-n} = b_n$ のとき, \begin{gather} e(x) = \frac{2}{\lambda} \left( b_0 \Phi_0(\bar{x}) + \sum_{n=1}^{N_b} b_n \Phi_n(\bar{x}) \right) \end{gather} ここで, \begin{eqnarray} \Phi_0(\bar{x}) &=& \frac{\sin \left(\frac{\pi D}{\lambda} \bar{x}\right)}{\frac{\pi D}{\lambda}\bar{x}} \\ \Phi_n(\bar{x}) &=& \frac{\sin (\frac{D}{\lambda}\bar{x}-n)\pi}{(\frac{D}{\lambda}\bar{x}-n)\pi} + \frac{\sin (\frac{D}{\lambda}\bar{x}+n)\pi}{(\frac{D}{\lambda}\bar{x}+n)\pi} \end{eqnarray}

1次元波源の共相励振

 1次元波源分布 $e(\bar{x})$ の振幅を $A(\bar{x})$,位相を $\psi (\bar{x})$ とおくと,電界指向性 $g(u)$ は, \begin{gather} g(u) = \frac{D}{2} \int_{-1}^1 A(\bar{x}) e^{j\psi(\bar{x})}e^{ju \bar{x}} d\bar{x} \end{gather} ここで, \begin{gather} u = \frac{\pi D}{\lambda} \sin \theta, \ \ \ \ \bar{x} = \frac{2}{D} x \end{gather} より,$\theta = \theta_m$の方向に共相励振するための位相項の条件は, \begin{align} &\psi(\bar{x}) + \frac{\pi D}{\lambda} \sin \theta_m \cdot \bar{x} = 0 \nonumber \\ &\therefore \psi(\bar{x}) = -\frac{\pi D}{\lambda} \sin \theta_m \cdot \bar{x} \end{align} これより,電界指向性$g(u)$は, \begin{gather} g(u) = \frac{D}{2} \int_{-1}^1 A(\bar{x}) e^{-j\frac{\pi D}{\lambda} \sin \theta_m \cdot \bar{x}} e^{ju \bar{x}} d\bar{x} \end{gather} ここで, \begin{eqnarray} v_m &\equiv& \frac{\pi D}{\lambda} (\sin \theta -\sin \theta_m) \nonumber \\ &=& u - \frac{\pi D}{\lambda} \sin \theta_m \end{eqnarray} とおくと, \begin{gather} g(u) = \frac{D}{2} \int_{-1}^1 A(\bar{x}) e^{jv_m \bar{x}} d\bar{x} \end{gather} 振幅が一定のとき,$A(\bar{x}) =A_0$ とおけば, \begin{eqnarray} g(u) &=& \frac{D}{2} A_0 \int_{-1}^1 e^{jv_m \bar{x}} d\bar{x} \nonumber \\ &=& \frac{D}{2} A_0 \frac{2 \sin v_m}{v_m} \nonumber \\ &=& DA_0 \frac{\sin v_m}{v_m} \end{eqnarray} いま,$g(0)=1$ とすると, \begin{gather} g(0) = DA_0 =1 \end{gather} よって, \begin{eqnarray} g(u) &=& \frac{\sin v_m}{v_m} \nonumber \\ &=& \frac{\sin \left( u-\frac{\pi D}{\lambda} \sin \theta_m \right)}{u-\frac{\pi D}{\lambda} \sin \theta_m} \label{eq:sincvm} \end{eqnarray}