5.4 電界指向性のフーリエ級数展開
指向性関数 $g(u)$ を複素フーリエ級数展開するため,
\begin{eqnarray}
u &=& \frac{\pi D}{\lambda} \sin \theta = \frac{\pi D}{\lambda} w
\\
w &=& \sin \theta
\end{eqnarray}
とおき,周期を $T=2$ として,
\begin{gather}
g(w) = \sum_{n=-N_b}^{N_b} b_n e^{jn\pi w}
\end{gather}
いま,$g(w) \ (-1 \le \sin \theta \le 1)$ が与えられれば,
\begin{align}
&\frac{1}{T} \int _{-1}^1 g(w) e^{-jm \pi w} dw
= \sum_{n=-N_b}^{N_b} b_n \frac{\sin (n-m)\pi}{(n-m)\pi}
= b_m
\nonumber \\
&\therefore
b_n = \frac{1}{2} \int_{-1}^1 g(w) e^{-jn \pi w} dw
\end{align}
有限範囲で一様な電界指向性
電界指向性 $g(w)$ が対称な場合,$b_{-n} = b_n$より,
\begin{eqnarray}
g(u)
&=& \sum_{n=-N_b}^{N_b} b_n e^{jn\pi w}
\nonumber \\
&=& \sum_{n=-N_b}^{-1} b_n e^{jn\pi w} + b_0 + \sum_{n=1}^{N_b} b_n e^{jn\pi w}
\nonumber \\
&=& \sum_{n'=1}^{N_b} b_{-n'} e^{j(-n')\pi w} + b_0 + \sum_{n=1}^{N_b} b_n e^{jn\pi w}
\nonumber \\
&=& b_0 + \sum_{n=1}^{N_b} 2 b_n \cos (n \pi w)
\end{eqnarray}
電界指向性が $(-1 \lt ) -\alpha \le w \le \alpha ( \lt 1)$ の範囲で
$g=1$(一定)のとき,展開係数 $b_n$ は,
\begin{eqnarray}
b_n
&=& \frac{1}{2} \int_{-1}^1 g(w) e^{-jn \pi w} dw
\nonumber \\
&=& \frac{1}{2} \int_{-\alpha}^\alpha e^{-jn \pi w} dw
\nonumber \\
&=& \alpha \frac{\sin (n\pi \alpha)}{n\pi \alpha}
\\
b_0 &=& \alpha \frac{\sin (0 \cdot \pi \alpha)}{0 \cdot \pi \alpha} = \alpha
\end{eqnarray}
電界指向性のフーリエ変換
電界指向性 $g(u)$ をフーリエ変換すると波源分布 $e(x)$ が得られ,
\begin{eqnarray}
e(x)
&=& \frac{1}{\pi D} \int_{-\infty}^\infty g(u) e^{-ju\bar{x}} du
\nonumber \\
&=& \frac{1}{\pi D} \frac{\pi D}{\lambda} \int_{-1}^1 g(w)
e^{-j\frac{\pi D}{\lambda}w \bar{x}} dw
\nonumber \\
&=& \frac{1}{\lambda} \int_{-1}^1 \left( \sum_{n=-N_b}^{N_b} b_n e^{jn\pi w} \right)
e^{-j\frac{\pi D}{\lambda}w \bar{x}} dw
\nonumber \\
&=& \frac{1}{\lambda} \sum_{n=-N_b}^{N_b} b_n \int_{-1}^1 e^{j(n\pi - \frac{\pi D}{\lambda}\bar{x})w} dw
\nonumber \\
&=& \frac{2}{\lambda} \sum_{n=-N_b}^{N_b} b_n \frac{\sin (n-\frac{D}{\lambda}\bar{x})\pi}{(n-\frac{D}{\lambda}\bar{x})\pi}
\nonumber \\
&=& \frac{2}{\lambda} \sum_{n=-N_b}^{N_b} b_n \frac{\sin (\frac{D}{\lambda}\bar{x}-n)\pi}{(\frac{D}{\lambda}\bar{x}-n)\pi}
\end{eqnarray}
さらに,$b_{-n} = b_n$ のとき,
\begin{gather}
e(x) = \frac{2}{\lambda} \left( b_0 \Phi_0(\bar{x}) + \sum_{n=1}^{N_b} b_n \Phi_n(\bar{x}) \right)
\end{gather}
ここで,
\begin{eqnarray}
\Phi_0(\bar{x}) &=& \frac{\sin \left(\frac{\pi D}{\lambda} \bar{x}\right)}{\frac{\pi D}{\lambda}\bar{x}}
\\
\Phi_n(\bar{x})
&=& \frac{\sin (\frac{D}{\lambda}\bar{x}-n)\pi}{(\frac{D}{\lambda}\bar{x}-n)\pi}
+ \frac{\sin (\frac{D}{\lambda}\bar{x}+n)\pi}{(\frac{D}{\lambda}\bar{x}+n)\pi}
\end{eqnarray}
1次元波源の共相励振
1次元波源分布 $e(\bar{x})$ の振幅を $A(\bar{x})$,位相を
$\psi (\bar{x})$ とおくと,電界指向性 $g(u)$ は,
\begin{gather}
g(u) = \frac{D}{2} \int_{-1}^1 A(\bar{x}) e^{j\psi(\bar{x})}e^{ju \bar{x}} d\bar{x}
\end{gather}
ここで,
\begin{gather}
u = \frac{\pi D}{\lambda} \sin \theta, \ \ \ \
\bar{x} = \frac{2}{D} x
\end{gather}
より,$\theta = \theta_m$の方向に共相励振するための位相項の条件は,
\begin{align}
&\psi(\bar{x}) + \frac{\pi D}{\lambda} \sin \theta_m \cdot \bar{x} = 0
\nonumber \\
&\therefore
\psi(\bar{x}) = -\frac{\pi D}{\lambda} \sin \theta_m \cdot \bar{x}
\end{align}
これより,電界指向性$g(u)$は,
\begin{gather}
g(u) = \frac{D}{2} \int_{-1}^1 A(\bar{x}) e^{-j\frac{\pi D}{\lambda} \sin \theta_m \cdot \bar{x}}
e^{ju \bar{x}} d\bar{x}
\end{gather}
ここで,
\begin{eqnarray}
v_m &\equiv& \frac{\pi D}{\lambda} (\sin \theta -\sin \theta_m)
\nonumber \\
&=& u - \frac{\pi D}{\lambda} \sin \theta_m
\end{eqnarray}
とおくと,
\begin{gather}
g(u) = \frac{D}{2} \int_{-1}^1 A(\bar{x}) e^{jv_m \bar{x}} d\bar{x}
\end{gather}
振幅が一定のとき,$A(\bar{x}) =A_0$ とおけば,
\begin{eqnarray}
g(u) &=& \frac{D}{2} A_0 \int_{-1}^1 e^{jv_m \bar{x}} d\bar{x}
\nonumber \\
&=& \frac{D}{2} A_0 \frac{2 \sin v_m}{v_m}
\nonumber \\
&=& DA_0 \frac{\sin v_m}{v_m}
\end{eqnarray}
いま,$g(0)=1$ とすると,
\begin{gather}
g(0) = DA_0 =1
\end{gather}
よって,
\begin{eqnarray}
g(u)
&=& \frac{\sin v_m}{v_m}
\nonumber \\
&=& \frac{\sin \left( u-\frac{\pi D}{\lambda} \sin \theta_m \right)}{u-\frac{\pi D}{\lambda} \sin \theta_m}
\label{eq:sincvm}
\end{eqnarray}