特性関数と散乱パラメータとの関係

反射係数

 端子1-1'から回路を見た反射係数\(\Gamma_1\)は, \begin{eqnarray} \Gamma_1 &=& \frac{Z_{in,1}-R_1}{Z_{in,1}+R_1} \nonumber \\ &=& \frac{\frac{AR_2+B}{CR_2+D}-R_1}{\frac{AR_2+B}{CR_2+D}+R_1} \nonumber \\ &=& \frac{(AR_2+B)-R_1(CR_2+D)}{(AR_2+B)+R_1(CR_2+D)} \nonumber \\ &=& S_{11} \end{eqnarray} 同様にして,端子2-2'から回路を見た反射係数\(\Gamma_2\)は, \begin{eqnarray} \Gamma_2 &=& \frac{Z_{in,2}-R_2}{Z_{in,2}+R_2} \nonumber \\ &=& \frac{\frac{DR_1+B}{CR_1+A}-R_2}{\frac{DR_1+B}{CR_1+A}+R_2} \nonumber \\ &=& \frac{(DR_1+B)-R_2(CR_1+A)}{(DR_1+B)+R_2(CR_1+A)} \nonumber \\ &=& S_{22} \end{eqnarray}

 また,反射係数\(\Gamma_1\),\(\Gamma_2\)と特性関数\(K\)との関係は, \begin{eqnarray} \Gamma_1 &=& \frac{Z_{in,1}-R_1}{Z_{in,1}+R_1} \nonumber \\ &=& \frac{\frac{Z_{in,1}}{R_1}-1}{\frac{Z_{in,1}}{R_1}+1} \nonumber \\ &=& \frac{z_{in,1}-1}{z_{in,1}+1} \nonumber \\ &=& \frac{\frac{H(s)+K(s)}{H(s)-K(s)}-1}{\frac{H(s)+K(s)}{H(s)-K(s)}+1} \nonumber \\ &=& \frac{(H+K)-(H-K)}{(H+K)+(H-K)} \nonumber \\ &=& \frac{K}{H} \nonumber \\ &=& S_{11} \\ \Gamma_2 &=& \frac{Z_{in,2}-R_2}{Z_{in,2}+R_2} \nonumber \\ &=& \frac{\frac{Z_{in,2}}{R_2}-1}{\frac{Z_{in,2}}{R_2}+1} \nonumber \\ &=& \frac{z_{in,2}-1}{z_{in,2}+1} \nonumber \\ &=& \frac{\frac{H(s)-K^*(s)}{H(s)+K^*(s)}-1}{\frac{H(s)-K^*(s)}{H(s)+K^*(s)}+1} \nonumber \\ &=& \frac{(H-K^*)-(H+K^*)}{(H-K^*)+(H+K^*)} \nonumber \\ &=& \frac{-K^*}{H} \nonumber \\ &=& \frac{-K(-s)}{H(s)} \nonumber \\ &=& S_{22} \end{eqnarray}

伝達関数と特性関数

 伝達関数\(H(s)\),特性関数\(K(s)\)の極は一致するので,\(s\)の多項式の比によって,次のようにおく. \begin{gather} H(s) \equiv \frac{e(s)}{p(s)} \\ K(s) \equiv \frac{f(s)}{p(s)} \label{eq:HepKfp} \end{gather} \(K(s)\)の零点\(s_n\)は,多項式\(f(s)\)の零点に等しく, \begin{gather} f(s) = \prod _{n=1}^N (s-s_n) \label{eq:fssn} \end{gather} \(K(s)\)の極は,多項式\(p(s)\)の零点\(s_m'\)であり, \begin{gather} p(s) = K_p \prod _{m=1}^N (s-s_m') \label{eq:pssm} \end{gather} ここで,

  • \(e(s)\)の零点:フィルタのnatural modes
  • \(p(s)\)の零点:伝送零点(loss poles, trasmission zeros)
  • \(f(s)\)の零点:反射零点(zero-loss frequencies, reflection zeros)
  • という\(^\dagger\).これより,\(K(s)K(-s)\)は, \begin{eqnarray} K(s)K(-s) &=& \frac{f(s)}{p(s)} \cdot \frac{f(-s)}{p(-s)} \nonumber \\ &=& \frac{1}{K_p^2} \cdot \frac{\displaystyle{\prod _{n=1}^N (s-s_n)(-s-s_n)}}{\displaystyle{\prod _{m=1}^M (s-s_m')(-s-s_m')}} \end{eqnarray}

    \(\dagger\) G.C.Temes, S.K.Mitra, “Modern Filter Theory and Design,” John Wiley & Sons (1973).

    散乱行列

     散乱行列\([S]\)は, \begin{eqnarray} [S] &=& \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \\ \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \frac{K}{H} & \frac{1}{H} \\ \frac{1}{H} & \frac{-K^*}{H} \\ \end{pmatrix} \nonumber \\ &=& \frac{1}{H(s)} \begin{pmatrix} K(s) & 1 \\ 1 & -K(-s) \\ \end{pmatrix} \nonumber \\ &=& \frac{1}{e(s)} \begin{pmatrix} f(s) & p(s) \\ p(s) & -\frac{p^*(s)}{p(s)} f^*(s) \\ \end{pmatrix} \end{eqnarray} ここで, \begin{gather} H(s) = \frac{e(s)}{p(s)} \\ K(s) = \frac{f(s)}{p(s)} \end{gather}

    Fledtkeller's equation

     式\eqref{eq:HepKfp}を \begin{gather} |H|^2 = 1+ |K|^2 \end{gather} に代入すると, \begin{align} &\left| \frac{e(s)}{p(s)} \right|^2 = 1 + \left| \frac{f(s)}{p(s)} \right|^2 \nonumber \\ &|e(s)|^2 = |p(s)|^2 + |f(s)|^2 \nonumber \\ &e(s) e(s)^* = p(s) p(s)^* + f(s) f(s)^* \end{align} ここで, \begin{align} &e(s)^*= e(-s) \\ &p(s)^*= p(-s) \\ &f(s)^*= f(-s) \end{align} より, \begin{gather} e(s) e(-s) = p(s) p(-s) + f(s) f(-s) \label{eq:eeppff} \end{gather} これをFledtkeller's equation(power balance relation)という.\(e(s) e(-s)\)の零点は,\(f(s)\),\(p(s)\)が与えられていれば,式\eqref{eq:eeppff}より数値的に求めることもできる. \begin{gather} e(s) = K_e \prod _{q=1}^Q (s-s_q'') \label{eq:essq} \end{gather} ここで,\(e(s)\)はフルビッツの多項式(Hurwitz polynomial)\(^\ddagger\),\(K_e\)は定数である. 式\eqref{eq:eeppff}に,式\eqref{eq:fssn},\eqref{eq:pssm},\eqref{eq:essq}を代入して, \begin{align} &K_e^2 \prod _{q=1}^Q (s-s_q'')(-s-s_q'') \nonumber \\ &= K_p^2 \prod _{m=1}^M (s-s_m')(-s-s_m') + \prod _{n=1}^N (s-s_n)(-s-s_n) \end{align} これより\(K_e=1\)とおくと,伝達関数\(H(s)\),特性関数\(K(s)\)は, \begin{eqnarray} H(s) &=& \frac{e(s)}{p(s)} \nonumber \\ &=& \frac{\displaystyle{\prod _{q=1}^Q (s-s_q'')}}{\displaystyle{K_p \prod _{m=1}^N (s-s_m')}} \\ K(s) &=& \frac{f(s)}{p(s)} \nonumber \\ &=& \frac{\displaystyle{\prod _{n=1}^N (s-s_n)}}{\displaystyle{K_p \prod _{m=1}^N (s-s_m')}} \end{eqnarray} 特性関数\(K(s)\)は,所望の損失\(P_{LR}\)をもつフィルタの特性を近似する関数が用いられる.

     反射係数\(\Gamma(s)\)は, \begin{eqnarray} \Gamma(s) &=& \frac{f(s)}{e(s)} \nonumber \\ &=& \frac{\displaystyle{\prod _{n=1}^N (s-s_n)}}{\displaystyle{\prod _{q=1}^Q (s-s_q'')}} \end{eqnarray} ただし,\(p(s)\)は,偶数次数のみの多項式(pure even polynomial),あるいは奇数次数のみの多項式(pure odd polynomial).また,\(e(s)\)の次数は,\(f(s)\),\(p(s)\)の次数と同じか大きい.

    \(\ddagger\) 武部 幹,篠崎寿夫(編),“伝送回路網入門演習 \(\mathrm{I}\),” 東海大学出版会(1975)