6.5 ビームモード関数
ビーム半径$\omega $,波面の曲率半径$\bar{R}$を用いると,
\begin{align}
&\frac{u^2}{1+v^2} = \frac{\gamma _0^2}{1+v^2} \rho ^2 = 2 \frac{\rho ^2}{\omega ^2}
\\
&\frac{1}{2} \frac{u^2}{1+v^2} = - \frac{\rho ^2}{\omega ^2}
\\
&\frac{u^2 v}{1+v^2} = \frac{k}{\bar{R}} \rho ^2
\end{align}
また,
\begin{eqnarray}
\gamma _0 \frac{u^{m \pm 1}}{(1+v^2)^{\frac{1}{2}(m \pm 1+1)}}
&=& \left( \frac{u^2}{1+v^2} \right) ^{\frac{1}{2}(m \pm 1)}
\left( \frac{\gamma _0^2}{1+v^2} \right) ^{\frac{1}{2}}
\nonumber \\
&=& \left( 2 \frac{\rho ^2}{\omega ^2} \right) ^{\frac{m \pm 1}{2}}
\left( \frac{2}{\omega ^2} \right) ^{\frac{1}{2}}
\end{eqnarray}
これより,$E_{m,n}^{(\pm )} $は次のように表される.
\begin{eqnarray}
E_{m,n}^{(\pm )}
&=& \frac{1}{\sqrt{2 \pi }} \sqrt{ \frac{n!}{ (n+m \pm 1)!} }
\left( \frac{2}{\omega } \right) \left( 2 \frac{\rho ^2}{\omega ^2} \right)
^{\frac{m \pm 1}{2}}
L_{n,m \pm 1} \left( 2 \frac{\rho ^2}{\omega ^2} \right)
\nonumber \\
&&\cdot e^{ - \frac{\rho ^2}{\omega ^2}
+ j\{ \left( 2n+m \pm 1+1 \right) \tan ^{-1} v
- \frac{k}{2 \bar{R}} \rho ^2 \} } e^{-jkz}
\end{eqnarray}
ここで,
\begin{align}
&F_{m \pm 1,n}(t)
\equiv \sqrt{ \frac{n!}{ (n+m \pm 1)!} } \left( 2 t^2 \right) ^{\frac{m \pm 1}{2}}
L_{n,m \pm 1} \left( 2 t^2 \right) e^{-t^2} \\
&t \equiv \frac{\rho}{\omega }
\end{align}
とおくと,
\begin{gather}
E_{m,n}^{(\pm )}
= \frac{1}{\sqrt{2 \pi }} \left( \frac{2}{\omega } \right) F_{m \pm 1,n}(t)
\cdot e^{j\{ (2n+m \pm 1+1) \tan ^{-1} v - \frac{k}{2 \bar{R}} \rho ^2 \} }
e^{-jkz}
\end{gather}
さらに,
\begin{gather}
\bar{m} \equiv m \pm 1
\end{gather}
とおけば,
\begin{gather}
F_{\bar{m},n}(t)
= \sqrt{ \frac{n!}{ (n+\bar{m})!} } \sqrt{2^{\bar{m}}} t^{\bar{m}}
L_{n,\bar{m}} ( 2 t^2 ) e^{-t^2}
\end{gather}
この式をもとに低次の$F_{\bar{m},n}(t)$について具体的に考えてみる.まず,$n=0$ のとき,
\begin{gather}
F_{\bar{m},0}(t)
= \sqrt{ \frac{1}{\bar{m}!} } \sqrt{2^{\bar{m}}} t^{\bar{m}}
L_{0,\bar{m}} \left( 2 t^2 \right) e^{-t^2}
= \sqrt{ \frac{1}{\bar{m}!} } \sqrt{2^{\bar{m}}} t^{\bar{m}} e^{-t^2}
\end{gather}
より,
\begin{eqnarray}
F_{0,0}(t) &=& e^{-t^2} \ \ \ [\mbox{dominate mode}]
\\
F_{1,0}(t) &=& \sqrt{2} t e^{-t^2} \ \ \ [\mbox{typical higher-order mode}]
\\
F_{2,0}(t) &=& \sqrt{2} t^2 e^{-t^2}
\end{eqnarray}
$n=1$ のとき,
\begin{gather}
F_{\bar{m},1}(t)
= \sqrt{ \frac{1}{(1+\bar{m})!} } \sqrt{2^{\bar{m}}} t^{\bar{m}}
L_{1,\bar{m}} \left( 2 t^2 \right) e^{-t^2}
\end{gather}
より,
\begin{eqnarray}
F_{0,1}(t) &=& L_{1,0}(2t^2) e^{-t^2}
\nonumber \\
&=& (1-2t^2) e^{-t^2}
\\
F_{1,1}(t) &=& t L_{1,1}(2t^2) e^{-t^2}
\nonumber \\
&=& 2t(1-t^2) e^{-t^2} \ \ \ [\mbox{typical higher-order mode}]
\\
F_{2,1}(t) &=& \frac{2}{\sqrt{6}} t^2 L_{1,2}(2t^2) e^{-t^2}
\nonumber \\
&=& \frac{2}{\sqrt{6}} t^2(3-2t^2) e^{-t^2}
\end{eqnarray}
$n=2$ のとき,
\begin{gather}
F_{\bar{m},2}(t)
= \sqrt{ \frac{2}{(2+\bar{m})!} } \sqrt{2^{\bar{m}}} t^{\bar{m}}
L_{2,\bar{m}} \left( 2 t^2 \right) e^{-t^2}
\end{gather}
より,
\begin{eqnarray}
F_{0,2}(t) &=& L_{2,0}(2t^2) e^{-t^2}
\nonumber \\
&=& (1-4t^2+2t^4) e^{-t^2} \ \ \ [\mbox{typical higher-order mode}]
\\
F_{1,2}(t) &=& \frac{2}{\sqrt{6}} t L_{2,1}(2t^2) e^{-t^2}
\nonumber \\
&=& \frac{2}{\sqrt{6}} t(3-6t^2+2t^4) e^{-t^2}
\\
F_{2,2}(t) &=& \frac{1}{\sqrt{3}} t^2 L_{2,2}(2t^2) e^{-t^2}
\nonumber \\
&=& \frac{2}{\sqrt{3}} t^2(3-4t^2+t^4) e^{-t^2}
\end{eqnarray}
正規直交化したラゲルの多項式の計算例
\begin{gather}
F_{\bar{m},n}(t)
= \sqrt{ \frac{n!}{ (n+\bar{m})!} } \sqrt{2^{\bar{m}}} t^{\bar{m}}
L_{n,\bar{m}} ( 2 t^2 ) e^{-t^2}
\end{gather}