6.5 ビームモード関数

 ビーム半径$\omega $,波面の曲率半径$\bar{R}$を用いると, \begin{align} &\frac{u^2}{1+v^2} = \frac{\gamma _0^2}{1+v^2} \rho ^2 = 2 \frac{\rho ^2}{\omega ^2} \\ &\frac{1}{2} \frac{u^2}{1+v^2} = - \frac{\rho ^2}{\omega ^2} \\ &\frac{u^2 v}{1+v^2} = \frac{k}{\bar{R}} \rho ^2 \end{align} また, \begin{eqnarray} \gamma _0 \frac{u^{m \pm 1}}{(1+v^2)^{\frac{1}{2}(m \pm 1+1)}} &=& \left( \frac{u^2}{1+v^2} \right) ^{\frac{1}{2}(m \pm 1)} \left( \frac{\gamma _0^2}{1+v^2} \right) ^{\frac{1}{2}} \nonumber \\ &=& \left( 2 \frac{\rho ^2}{\omega ^2} \right) ^{\frac{m \pm 1}{2}} \left( \frac{2}{\omega ^2} \right) ^{\frac{1}{2}} \end{eqnarray} これより,$E_{m,n}^{(\pm )} $は次のように表される. \begin{eqnarray} E_{m,n}^{(\pm )} &=& \frac{1}{\sqrt{2 \pi }} \sqrt{ \frac{n!}{ (n+m \pm 1)!} } \left( \frac{2}{\omega } \right) \left( 2 \frac{\rho ^2}{\omega ^2} \right) ^{\frac{m \pm 1}{2}} L_{n,m \pm 1} \left( 2 \frac{\rho ^2}{\omega ^2} \right) \nonumber \\ &&\cdot e^{ - \frac{\rho ^2}{\omega ^2} + j\{ \left( 2n+m \pm 1+1 \right) \tan ^{-1} v - \frac{k}{2 \bar{R}} \rho ^2 \} } e^{-jkz} \end{eqnarray} ここで, \begin{align} &F_{m \pm 1,n}(t) \equiv \sqrt{ \frac{n!}{ (n+m \pm 1)!} } \left( 2 t^2 \right) ^{\frac{m \pm 1}{2}} L_{n,m \pm 1} \left( 2 t^2 \right) e^{-t^2} \\ &t \equiv \frac{\rho}{\omega } \end{align} とおくと, \begin{gather} E_{m,n}^{(\pm )} = \frac{1}{\sqrt{2 \pi }} \left( \frac{2}{\omega } \right) F_{m \pm 1,n}(t) \cdot e^{j\{ (2n+m \pm 1+1) \tan ^{-1} v - \frac{k}{2 \bar{R}} \rho ^2 \} } e^{-jkz} \end{gather} さらに, \begin{gather} \bar{m} \equiv m \pm 1 \end{gather} とおけば, \begin{gather} F_{\bar{m},n}(t) = \sqrt{ \frac{n!}{ (n+\bar{m})!} } \sqrt{2^{\bar{m}}} t^{\bar{m}} L_{n,\bar{m}} ( 2 t^2 ) e^{-t^2} \end{gather} この式をもとに低次の$F_{\bar{m},n}(t)$について具体的に考えてみる.まず,$n=0$ のとき, \begin{gather} F_{\bar{m},0}(t) = \sqrt{ \frac{1}{\bar{m}!} } \sqrt{2^{\bar{m}}} t^{\bar{m}} L_{0,\bar{m}} \left( 2 t^2 \right) e^{-t^2} = \sqrt{ \frac{1}{\bar{m}!} } \sqrt{2^{\bar{m}}} t^{\bar{m}} e^{-t^2} \end{gather} より, \begin{eqnarray} F_{0,0}(t) &=& e^{-t^2} \ \ \ [\mbox{dominate mode}] \\ F_{1,0}(t) &=& \sqrt{2} t e^{-t^2} \ \ \ [\mbox{typical higher-order mode}] \\ F_{2,0}(t) &=& \sqrt{2} t^2 e^{-t^2} \end{eqnarray} $n=1$ のとき, \begin{gather} F_{\bar{m},1}(t) = \sqrt{ \frac{1}{(1+\bar{m})!} } \sqrt{2^{\bar{m}}} t^{\bar{m}} L_{1,\bar{m}} \left( 2 t^2 \right) e^{-t^2} \end{gather} より, \begin{eqnarray} F_{0,1}(t) &=& L_{1,0}(2t^2) e^{-t^2} \nonumber \\ &=& (1-2t^2) e^{-t^2} \\ F_{1,1}(t) &=& t L_{1,1}(2t^2) e^{-t^2} \nonumber \\ &=& 2t(1-t^2) e^{-t^2} \ \ \ [\mbox{typical higher-order mode}] \\ F_{2,1}(t) &=& \frac{2}{\sqrt{6}} t^2 L_{1,2}(2t^2) e^{-t^2} \nonumber \\ &=& \frac{2}{\sqrt{6}} t^2(3-2t^2) e^{-t^2} \end{eqnarray} $n=2$ のとき, \begin{gather} F_{\bar{m},2}(t) = \sqrt{ \frac{2}{(2+\bar{m})!} } \sqrt{2^{\bar{m}}} t^{\bar{m}} L_{2,\bar{m}} \left( 2 t^2 \right) e^{-t^2} \end{gather} より, \begin{eqnarray} F_{0,2}(t) &=& L_{2,0}(2t^2) e^{-t^2} \nonumber \\ &=& (1-4t^2+2t^4) e^{-t^2} \ \ \ [\mbox{typical higher-order mode}] \\ F_{1,2}(t) &=& \frac{2}{\sqrt{6}} t L_{2,1}(2t^2) e^{-t^2} \nonumber \\ &=& \frac{2}{\sqrt{6}} t(3-6t^2+2t^4) e^{-t^2} \\ F_{2,2}(t) &=& \frac{1}{\sqrt{3}} t^2 L_{2,2}(2t^2) e^{-t^2} \nonumber \\ &=& \frac{2}{\sqrt{3}} t^2(3-4t^2+t^4) e^{-t^2} \end{eqnarray}

正規直交化したラゲルの多項式の計算例

\begin{gather} F_{\bar{m},n}(t) = \sqrt{ \frac{n!}{ (n+\bar{m})!} } \sqrt{2^{\bar{m}}} t^{\bar{m}} L_{n,\bar{m}} ( 2 t^2 ) e^{-t^2} \end{gather}
正規直交系にしたラゲルの多項式($\bar{m} = 0$)
正規直交系にしたラゲルの多項式($\bar{m} = 1$)
正規直交系にしたラゲルの多項式($\bar{m} = 2$)
正規直交系にしたラゲルの多項式($\bar{m} = 3$)