6.2 平面波面の近似
TE波とTM波を合成した電界分布$E_{\rho m} ^{(\pm )}$を再記して,
\begin{eqnarray}
E_{\rho m} ^{(\pm )}
&=& \frac{1}{2} \int _0^{\infty } f_m^{(\pm )} (\gamma )
\Big\{ (k \pm h) J_{m+1}(\gamma \rho ) + (k \mp h) J_{m-1}(\gamma \rho ) \Big\}
\nonumber \\
&&\cdot e^{-jhz} \gamma d \gamma
\label{eq:e-rho-m}
\end{eqnarray}
ここでは,波面が平面波に近い場合を考え,$z$方向の波数成分$h$を次のように近似する.
\begin{gather}
h = \sqrt{k^2 - \gamma ^2 } \simeq k - \frac{\gamma ^2}{2k}
\end{gather}
変形して,
\begin{gather}
k \pm h \simeq {2k \brace 0} \mp \frac{\gamma ^2}{2k}
\end{gather}
これより,式\eqref{eq:e-rho-m}を近似すると次のようになる.
\begin{eqnarray}
E_{\rho m} ^{(\pm )} &\simeq& \frac{1}{2} e^{-jkz}
\int _0^{\infty } f_m^{(\pm )} (\gamma )
\nonumber \\
&&\cdot \left[ 2k J_{m \pm 1}(\gamma \rho ) \mp \frac{\gamma ^2}{2k}
\left\{ J_{m+1}(\gamma \rho )-J_{m-1}(\gamma \rho ) \right\} \right]
e^{j \frac{\gamma ^2}{2k} z} \gamma d \gamma
\end{eqnarray}
さらに,第2項を無視して次式が得られる.
\begin{gather}
E_{\rho m} ^{(\pm )} \simeq k e^{-jkz} \int _0^{\infty } f_m^{(\pm )} (\gamma )
J_{m \pm 1}(\gamma \rho ) e^{j \frac{\gamma ^2}{2k} z} \gamma d \gamma
\end{gather}
同様にして,
\begin{eqnarray}
E_{\phi m} ^{(\pm )}
&=& \frac{1}{2} \int _0^{\infty } f_m^{(\pm )} (\gamma )
\{ (k \pm h) J_{m+1}(\gamma \rho ) - (k \mp h) J_{m-1}(\gamma \rho ) \}
e^{-jhz} \gamma d \gamma
\nonumber \\
&\simeq& \frac{1}{2} e^{-jkz}
\int _0^{\infty } f_m^{(\pm )} (\gamma )
\nonumber \\
&&\cdot \left[ \pm 2k J_{m \pm 1}(\gamma \rho ) \mp \frac{\gamma ^2}{2k}
\left\{ J_{m+1}(\gamma \rho ) + J_{m-1}(\gamma \rho ) \right\} \right]
e^{j \frac{\gamma ^2}{2k} z} \gamma d \gamma
\nonumber \\
&\simeq& \pm k e^{-jkz}
\int _0^{\infty } f_m^{(\pm )} (\gamma )
J_{m \pm 1}(\gamma \rho ) e^{j \frac{\gamma ^2}{2k} z} \gamma d \gamma
\end{eqnarray}
これより,電界の$\rho$成分と$\phi$成分の関係は,
\begin{gather}
E_{\rho m} ^{(\pm )} = \pm E_{\phi m} ^{(\pm )}
\label{eq:e-rho-phi}
\end{gather}
また, 同様にして,$z$成分についても,
\begin{eqnarray}
E_{z m} ^{(\pm )}
&=& \mp j \int _0^{\infty } f_m^{(\pm )} (\gamma )
e^{-jhz} J_m (\gamma \rho ) \gamma ^2 d \gamma
\nonumber \\
&\simeq& \mp j k e^{-jkz}
\int _0^{\infty } f_m^{(\pm )} (\gamma )
J_m (\gamma \rho ) e^{j \frac{\gamma ^2}{2k} z} \frac{\gamma ^2}{k} d \gamma
\end{eqnarray}
ただし,係数$f_m^{(\pm )} (\gamma ) $は円筒波スペクトラムを示す.