6.2 平面波面の近似

 TE波とTM波を合成した電界分布$E_{\rho m} ^{(\pm )}$を再記して, \begin{eqnarray} E_{\rho m} ^{(\pm )} &=& \frac{1}{2} \int _0^{\infty } f_m^{(\pm )} (\gamma ) \Big\{ (k \pm h) J_{m+1}(\gamma \rho ) + (k \mp h) J_{m-1}(\gamma \rho ) \Big\} \nonumber \\ &&\cdot e^{-jhz} \gamma d \gamma \label{eq:e-rho-m} \end{eqnarray} ここでは,波面が平面波に近い場合を考え,$z$方向の波数成分$h$を次のように近似する. \begin{gather} h = \sqrt{k^2 - \gamma ^2 } \simeq k - \frac{\gamma ^2}{2k} \end{gather} 変形して, \begin{gather} k \pm h \simeq {2k \brace 0} \mp \frac{\gamma ^2}{2k} \end{gather} これより,式\eqref{eq:e-rho-m}を近似すると次のようになる. \begin{eqnarray} E_{\rho m} ^{(\pm )} &\simeq& \frac{1}{2} e^{-jkz} \int _0^{\infty } f_m^{(\pm )} (\gamma ) \nonumber \\ &&\cdot \left[ 2k J_{m \pm 1}(\gamma \rho ) \mp \frac{\gamma ^2}{2k} \left\{ J_{m+1}(\gamma \rho )-J_{m-1}(\gamma \rho ) \right\} \right] e^{j \frac{\gamma ^2}{2k} z} \gamma d \gamma \end{eqnarray} さらに,第2項を無視して次式が得られる. \begin{gather} E_{\rho m} ^{(\pm )} \simeq k e^{-jkz} \int _0^{\infty } f_m^{(\pm )} (\gamma ) J_{m \pm 1}(\gamma \rho ) e^{j \frac{\gamma ^2}{2k} z} \gamma d \gamma \end{gather} 同様にして, \begin{eqnarray} E_{\phi m} ^{(\pm )} &=& \frac{1}{2} \int _0^{\infty } f_m^{(\pm )} (\gamma ) \{ (k \pm h) J_{m+1}(\gamma \rho ) - (k \mp h) J_{m-1}(\gamma \rho ) \} e^{-jhz} \gamma d \gamma \nonumber \\ &\simeq& \frac{1}{2} e^{-jkz} \int _0^{\infty } f_m^{(\pm )} (\gamma ) \nonumber \\ &&\cdot \left[ \pm 2k J_{m \pm 1}(\gamma \rho ) \mp \frac{\gamma ^2}{2k} \left\{ J_{m+1}(\gamma \rho ) + J_{m-1}(\gamma \rho ) \right\} \right] e^{j \frac{\gamma ^2}{2k} z} \gamma d \gamma \nonumber \\ &\simeq& \pm k e^{-jkz} \int _0^{\infty } f_m^{(\pm )} (\gamma ) J_{m \pm 1}(\gamma \rho ) e^{j \frac{\gamma ^2}{2k} z} \gamma d \gamma \end{eqnarray} これより,電界の$\rho$成分と$\phi$成分の関係は, \begin{gather} E_{\rho m} ^{(\pm )} = \pm E_{\phi m} ^{(\pm )} \label{eq:e-rho-phi} \end{gather} また, 同様にして,$z$成分についても, \begin{eqnarray} E_{z m} ^{(\pm )} &=& \mp j \int _0^{\infty } f_m^{(\pm )} (\gamma ) e^{-jhz} J_m (\gamma \rho ) \gamma ^2 d \gamma \nonumber \\ &\simeq& \mp j k e^{-jkz} \int _0^{\infty } f_m^{(\pm )} (\gamma ) J_m (\gamma \rho ) e^{j \frac{\gamma ^2}{2k} z} \frac{\gamma ^2}{k} d \gamma \end{eqnarray} ただし,係数$f_m^{(\pm )} (\gamma ) $は円筒波スペクトラムを示す.