6.1 TE波とTM波の合成

 任意の電磁界は,TE波とTM波の合成によって表すことができるので,まず,電界を次のように定義する. \begin{eqnarray} \VEC{E} &=& \VEC{E}^{\TE} + \VEC{E}^{\TM} \nonumber \\ &=& \left( E_\rho^{\TE} \VEC{a} _\rho + E_\phi^{\TE} \VEC{a} _\phi \right) + \left( E_\rho^{\TM} \VEC{a} _\rho + E_\phi^{\TM} \VEC{a} _\phi + E_z^{\TM} \VEC{a} _z \right) \nonumber \\ &=& \left( E_\rho^{\TE} + E_\rho^{\TM} \right) \VEC{a} _\rho + \left( E_\phi^{\TE} + E_\phi^{\TM} \right) \VEC{a} _\phi + E_z^{\TM} \VEC{a} _z \nonumber \\ &=& E_\rho \VEC{a} _\rho + E_\phi \VEC{a} _\phi + E_z \VEC{a} _z \end{eqnarray} 同様にして,磁界は \begin{eqnarray} \VEC{H} &=& \VEC{H}^{\TE} + \VEC{H}^{\TM} \nonumber \\ &=& \left( H_\rho^{\TE} \VEC{a} _\rho + H_\phi^{\TE} \VEC{a} _\phi + H_z^{\TE} \VEC{a} _z \right) + \left( H_\rho^{\TM} \VEC{a} _\rho + H_\phi^{\TM} \VEC{a} _\phi \right) \nonumber \\ &=& \left( H_\rho^{\TE} + H_\rho^{\TM} \right) \VEC{a} _\rho + \left( H_\phi^{\TE} + H_\phi^{\TM} \right) \VEC{a} _\phi + H_z^{\TE} \VEC{a} _z \nonumber \\ &=& H_\rho \VEC{a} _\rho + H_\phi \VEC{a} _\phi + H_z \VEC{a} _z \end{eqnarray} これより,電界の$\rho$方向に沿う成分$E_\rho$,および$\phi$方向に沿う成分$E_\phi$は,次のようになる. \begin{eqnarray} E_\rho &=& E_\rho^{\TE} + E_\rho^{\TM} \nonumber \\ &=& \sum_m \left\{ \int_\gamma \frac{\gamma}{2} \left( \bar{f}_m^{\TE} (\gamma) R_{E\rho}^{\TE} + \bar{f}_m^{\TM} (\gamma) R_{E\rho}^{\TM} \right) e^{-jhz} d\gamma \right\} \nonumber \\ &&\cdot \cos (m\phi + \alpha_m) \label{eq:erho_tetm} \\ E_\phi &=& E_\phi^{\TE} + E_\phi^{\TM} \nonumber \\ &=& \sum_m \left\{ \int_\gamma \frac{\gamma}{2} \left( \bar{f}_m^{\TE} (\gamma) R_{E\phi}^{\TE} + \bar{f}_m^{\TM} (\gamma) R_{E\phi}^{\TM} \right) e^{-jhz} d\gamma \right\} \nonumber \\ &&\cdot \sin (m\phi + \alpha_m) \label{eq:ephi_tetm} \end{eqnarray} ここで, \begin{gather} R_{E\rho} ^{\TE \brace \TM} \equiv \pm {k \brace h} \{ J_{m-1}(\gamma \rho ) \pm J_{m+1}(\gamma \rho ) \} \\ R_{E\phi} ^{\TE \brace \TM} \equiv \mp {k \brace h} \{ J_{m-1}(\gamma \rho ) \mp J_{m+1}(\gamma \rho ) \} \end{gather} とおくと, \begin{eqnarray} &&\bar{f}_m^{\TE} R_{E{\rho \brace \phi}}^{\TE} + \bar{f}_m^{\TM} R_{E{\rho \brace \phi}}^{\TM} \nonumber \\ &\equiv& f_m^{(+)} \left( R_{E{\rho \brace \phi}}^{\TE} + R_{E{\rho \brace \phi}}^{\TM} \right) + f_m^{(-)} \left( R_{E{\rho \brace \phi}}^{\TE} - R_{E{\rho \brace \phi}}^{\TM} \right) \nonumber \\ &\equiv& f_m^{(+)} R_{E{\rho \brace \phi}}^{(+)} + f_m^{(-)} R_{E{\rho \brace \phi}}^{(-)} \nonumber \\ &=& \left( f_m^{(+)} + f_m^{(-)} \right) R_{E{\rho \brace \phi}}^{\TE} + \left( f_m^{(+)} - f_m^{(-)} \right) R_{E{\rho \brace \phi}}^{\TM} \end{eqnarray} ただし,$\bar{f}_m^{\TE} $,$\bar{f}_m^{\TM}$は,TE波,TM波の円筒波スペクトラムを示し,新たに,スペクトラム$ f_m^{(+)}$,$ f_m^{(-)}$を定義している. \begin{gather} \bar{f}_m^{\TE} = f_m^{(+)} + f_m^{(-)} \\ \bar{f}_m^{\TM} = f_m^{(+)} - f_m^{(-)} \end{gather} よって, \begin{gather} f_m^{(+)} = \bar{f}_m^{\TE} + \bar{f}_m^{\TM} \\ f_m^{(-)} = \bar{f}_m^{\TE} - \bar{f}_m^{\TM} \end{gather} ここで, \begin{gather} R_{E{\rho \brace \phi}}^{(+)} = R_{E{\rho \brace \phi}}^{\TE} + R_{E{\rho \brace \phi}}^{\TM} \\ R_{E{\rho \brace \phi}}^{(-)} = R_{E{\rho \brace \phi}}^{\TE} - R_{E{\rho \brace \phi}}^{\TM} \end{gather} これより, \begin{eqnarray} R_{E\rho}^{(+)} && R_{E\rho}^{\TE} + R_{E\rho}^{\TM} \nonumber \\ &=& k \{ J_{m-1}(\gamma \rho ) + J_{m+1}(\gamma \rho ) \} - h \{ J_{m-1}(\gamma \rho ) - J_{m+1}(\gamma \rho ) \} \nonumber \\ &=& (k + h) J_{m+1}(\gamma \rho ) + (k - h) J_{m-1}(\gamma \rho ) \\ R_{E\rho}^{(-)} &=& R_{E\rho}^{\TE} - R_{E\rho}^{\TM} \nonumber \\ &=& k \{ J_{m-1}(\gamma \rho ) + J_{m+1}(\gamma \rho ) \} + h \{ J_{m-1}(\gamma \rho ) - J_{m+1}(\gamma \rho ) \} \nonumber \\ &=& (k - h) J_{m+1}(\gamma \rho ) + (k + h) J_{m-1}(\gamma \rho ) \\ R_{E\phi}^{(+)} &=& R_{E\phi}^{\TE} + R_{E\phi}^{\TM} \nonumber \\ &=& - k \{ J_{m-1}(\gamma \rho ) - J_{m+1}(\gamma \rho ) \} + h \{ J_{m-1}(\gamma \rho ) + J_{m+1}(\gamma \rho ) \} \nonumber \\ &=& (k + h) J_{m+1}(\gamma \rho ) - (k - h) J_{m-1}(\gamma \rho ) \\ R_{E\phi}^{(-)} &=& R_{E\phi}^{\TE} - R_{E\phi}^{\TM} \nonumber \\ &=& - k \{ J_{m-1}(\gamma \rho ) - J_{m+1}(\gamma \rho ) \} - h \{ J_{m-1}(\gamma \rho ) + J_{m+1}(\gamma \rho ) \} \nonumber \\ &=& (k - h) J_{m+1}(\gamma \rho ) - (k + h) J_{m-1}(\gamma \rho ) \end{eqnarray} また,磁界の$\rho$方向に沿う成分$H_\rho$,および$\phi$方向に沿う成分$H_\phi$は, \begin{eqnarray} H_\rho &=& H_\rho^{\TE} + H_\rho^{\TM} \nonumber \\ &=& Y_w \sum_m \left\{ \int_\gamma \frac{\gamma}{2} \left( \bar{f}_m^{\TE} (\gamma) R_{H\rho}^{\TE} + \bar{f}_m^{\TM} (\gamma) R_{H\rho}^{\TM} \right) e^{-jhz} d\gamma \right\} \nonumber \\ &&\cdot \sin (m\phi + \alpha_m) \nonumber \\ &\equiv& Y_w \sum_m \left\{ \int_\gamma \frac{\gamma}{2} \left( f_m^{(+)} (\gamma) R_{H\rho}^{(+)} + f_m^{(-)} (\gamma) R_{H\rho}^{(-)} \right) e^{-jhz} d\gamma \right\} \nonumber \\ &&\cdot \sin (m\phi + \alpha_m) \end{eqnarray} ここで, \begin{gather} R_{H\rho} ^{\TE \brace \TM} \equiv \pm {h \brace k} \{ J_{m-1}(\gamma \rho ) \mp J_{m+1}(\gamma \rho ) \} \end{gather} これより, \begin{eqnarray} R_{H\rho}^{(+)} &=& R_{H\rho}^{\TE} + R_{H\rho}^{\TM} \nonumber \\ &=& h \{ J_{m-1}(\gamma \rho ) - J_{m+1}(\gamma \rho ) \} - k \{ J_{m-1}(\gamma \rho ) + J_{m+1}(\gamma \rho ) \} \nonumber \\ &=& -(k + h) J_{m+1}(\gamma \rho ) - (k - h) J_{m-1}(\gamma \rho ) \nonumber \\ &=& -R_{E\rho}^{(+)} \\ R_{H\rho}^{(-)} &=& R_{H\rho}^{\TE} - R_{H\rho}^{\TM} \nonumber \\ &=& h \{ J_{m-1}(\gamma \rho ) - J_{m+1}(\gamma \rho ) \} + k \{ J_{m-1}(\gamma \rho ) + J_{m+1}(\gamma \rho ) \} \nonumber \\ &=& (k - h) J_{m+1}(\gamma \rho ) + (k + h) J_{m-1}(\gamma \rho ) \nonumber \\ &=& R_{E\rho}^{(-)} \end{eqnarray} また, \begin{eqnarray} H_\phi &=& H_\phi^{\TE} + H_\phi^{\TM} \nonumber \\ &=& Y_w \sum_m \left\{ \int_\gamma \frac{\gamma}{2} \left( \bar{f}_m^{\TE} (\gamma) R_{H\phi}^{\TE} + \bar{f}_m^{\TM} (\gamma) R_{H\phi}^{\TM} \right) e^{-jhz} d\gamma \right\} \nonumber \\ &&\cdot \cos (m\phi + \alpha_m) \nonumber \\ &\equiv& Y_w \sum_m \left\{ \int_\gamma \frac{\gamma}{2} \left( f_m^{(+)} (\gamma) R_{H\phi}^{(+)} + f_m^{(-)} (\gamma) R_{H\phi}^{(-)} \right) e^{-jhz} d\gamma \right\} \nonumber \\ &&\cdot \cos (m\phi + \alpha_m) \end{eqnarray} ここで, \begin{gather} R_{H\phi} ^{\TE \brace \TM} \equiv \pm {h \brace k} \{ J_{m-1}(\gamma \rho ) \pm J_{m+1}(\gamma \rho ) \} \end{gather} これより, \begin{eqnarray} R_{H\phi}^{(+)} &=& R_{H\phi}^{\TE} + R_{H\phi}^{\TM} \nonumber \\ &=& h \{ J_{m-1}(\gamma \rho ) + J_{m+1}(\gamma \rho ) \} - k \{ J_{m-1}(\gamma \rho ) - J_{m+1}(\gamma \rho ) \} \nonumber \\ &=& (k + h) J_{m+1}(\gamma \rho ) - (k - h) J_{m-1}(\gamma \rho ) \nonumber \\ &=& R_{E\phi}^{(+)} \\ R_{H\phi}^{(-)} &=& R_{H\phi}^{\TE} - R_{H\phi}^{\TM} \nonumber \\ &=& h \{ J_{m-1}(\gamma \rho ) + J_{m+1}(\gamma \rho ) \} + k \{ J_{m-1}(\gamma \rho ) - J_{m+1}(\gamma \rho ) \} \nonumber \\ &=& -(k - h) J_{m+1}(\gamma \rho ) + (k + h) J_{m-1}(\gamma \rho ) \nonumber \\ &=& -R_{E\phi}^{(-)} \end{eqnarray} $z$成分については, \begin{eqnarray} E_z &=& E_z^{\TM} = -j \sum _m \left\{ \int_\gamma \bar{f}_m^{\TM} (\gamma) \gamma^2 J_m ( \gamma \rho ) e^{-jhz} d\gamma \right\} \cos (m\phi + \alpha_m) \nonumber \\ &=& -j \sum _m \left\{ \int_\gamma \left( f_m^{(+)} (\gamma) - f_m^{(-)} (\gamma)\right) \gamma^2 J_m ( \gamma \rho ) e^{-jhz} d\gamma \right\} \cos (m\phi + \alpha_m) \nonumber \\ &=& \sum_m \left( E_{z m}^{(+)} + E_{z m}^{(-)} \right) \cos (m\phi + \alpha_m) \nonumber \end{eqnarray} ここで, \begin{gather} E_{z m} ^{(\pm )} = \mp j \int _\gamma f_m^{(\pm )} (\gamma ) e^{-jhz} J_m (\gamma \rho ) \gamma ^2 d \gamma \end{gather} また, \begin{eqnarray} H_z &=& H_z^{\TE} = j Y_w \sum _m \left\{ \int_\gamma \bar{f}_m^{\TE} (\gamma) \gamma^2 J_m ( \gamma \rho ) e^{-jhz} d\gamma \right\} \sin (m\phi + \alpha_m) \nonumber \\ &=& j Y_w \sum _m \left\{ \int_\gamma \left( f_m^{(+)} (\gamma) + f_m^{(-)} (\gamma)\right) \gamma^2 J_m ( \gamma \rho ) e^{-jhz} d\gamma \right\} \sin (m\phi + \alpha_m) \nonumber \\ &\equiv& \sum_m \left( H_{z m}^{(+)} + H_{z m}^{(-)} \right) \sin (m\phi + \alpha_m) \nonumber \end{eqnarray} ここで, \begin{gather} H_{z m} ^{(\pm )} = j Y_w \int _\gamma f_m^{(\pm )} (\gamma ) e^{-jhz} J_m (\gamma \rho ) \gamma ^2 d \gamma = \mp Y_w E_{z m} ^{(\pm )} \end{gather} これより, \begin{gather} E_\rho = \sum_m \left( E_{\rho m}^{(+)} + E_{\rho m}^{(-)} \right) \cos (m\phi + \alpha_m) \equiv \sum_m \left( \hat{E}_{\rho m,c}^{(+)} + \hat{E}_{\rho m,c}^{(-)} \right) \\ E_\phi = \sum_m \left( E_{\phi m}^{(+)} + E_{\phi m}^{(-)} \right) \sin (m\phi + \alpha_m) \equiv \sum_m \left( \hat{E}_{\phi m,c}^{(+)} + \hat{E}_{\phi m,c}^{(-)} \right) \\ E_z = \sum_m \left( E_{z m}^{(+)} + E_{z m}^{(-)} \right) \cos (m\phi + \alpha_m) \equiv \sum_m \left( \hat{E}_{z m,c}^{(+)} + \hat{E}_{z m,c}^{(-)} \right) \end{gather} ここで, \begin{eqnarray} E_{\rho m} ^{(\pm )} &=& \frac{1}{2} \int _0^{\infty } f_m^{(\pm )} (\gamma ) \Big\{ (k \pm h) J_{m+1}(\gamma \rho ) + (k \mp h) J_{m-1}(\gamma \rho ) \Big\} \nonumber \\ &&\cdot e^{-jhz} \gamma d \gamma \label{eq:e-rho-m} \\ E_{\phi m} ^{(\pm )} &=& \frac{1}{2} \int _0^{\infty } f_m^{(\pm )} (\gamma ) \Big\{ (k \pm h) J_{m+1}(\gamma \rho ) - (k \mp h) J_{m-1}(\gamma \rho ) \Big\} \nonumber \\ &&\cdot e^{-jhz} \gamma d \gamma \label{eq:e-phi-m} \\ E_{z m} ^{(\pm )} &=& \mp j \int _0^{\infty } f_m^{(\pm )} (\gamma ) e^{-jhz} J_m (\gamma \rho ) \gamma ^2 d \gamma \label{eq:e-z-m} \end{eqnarray} また, \begin{eqnarray} H_\rho &=& \sum_m \left( H_{\rho m}^{(+)} + H_{\rho m}^{(-)} \right) \sin (m\phi + \alpha_m) \equiv \sum_m \left( \hat{H}_{\rho m,c}^{(+)} + \hat{H}_{\rho m,c}^{(-)} \right) \nonumber \\ &=& Y_w \sum_m \left( -E_{\rho m}^{(+)} + E_{\rho m}^{(-)} \right) \sin (m\phi + \alpha_m) \\ H_\phi &=& \sum_m \left( H_{\phi m}^{(+)} + H_{\phi m}^{(-)} \right) \cos (m\phi + \alpha_m) \equiv \sum_m \left( \hat{H}_{\phi m,c}^{(+)} + \hat{H}_{\phi m,c}^{(-)} \right) \nonumber \\ &=& Y_w \sum_m \left( E_{\phi m}^{(+)} - E_{\phi m}^{(-)} \right) \cos (m\phi + \alpha_m) \\ H_z &=& \sum_m \left( H_{z m}^{(+)} + H_{z m}^{(-)} \right) \sin (m\phi + \alpha_m) \equiv \sum_m \left( \hat{H}_{z m,c}^{(+)} + \hat{H}_{z m,c}^{(-)} \right) \nonumber \\ &=& Y_w \sum_m \left( -E_{z m}^{(+)} + E_{z m}^{(-)} \right) \sin (m\phi + \alpha_m) \end{eqnarray} ここで, \begin{gather} \hat{E}_{\rho m,c}^{(\pm)} = E_{\rho m}^{(\pm )} \cos (m \phi + \alpha _{m}) \\ \hat{E}_{\phi m,c}^{(\pm)} = E_{\phi m}^{(\pm )} \sin (m \phi + \alpha _{m}) \\ \hat{E}_{z m,c}^{(\pm)} = E_{z m}^{(\pm )} \cos (m \phi + \alpha _{m}) \end{gather} また, \begin{gather} \hat{H}_{\rho m,c}^{(\pm)} = \mp \sqrt{\frac{\epsilon }{\mu }} E_{\rho m}^{(\pm )} \sin (m \phi + \alpha _{m}) \\ \hat{H}_{\phi m,c}^{(\pm)} = \pm \sqrt{\frac{\epsilon }{\mu }} E_{\phi m}^{(\pm )} \cos (m \phi + \alpha _{m}) \\ \hat{H}_{z m,c}^{(\pm)} = \mp \sqrt{\frac{\epsilon }{\mu }} E_{z m}^{(\pm )} \sin (m \phi + \alpha _{m}) \end{gather}