5.4 TM波

 TM波の磁界の$z$成分は$H_z^{\TM} = 0$,電界の$z$成分$E_z^{\TM} $は, \begin{eqnarray} E_z^{\TM} &=& \frac{1}{j\omega \epsilon} \left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{1}{j\omega \epsilon} \left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi _{\gamma, m, h} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{\gamma^2}{j\omega \epsilon} \psi _{\gamma, m, h} d\gamma \end{eqnarray} ただし,$f_m^{\TM} (\gamma)$はTM波の円筒波スペクトラムを示す.また,$z$軸に直交する横断面内磁界成分は, \begin{eqnarray} H_{\rho }^{\TM} &=& \frac{1}{\rho } \frac{\partial \psi }{\partial \phi } = \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{1}{\rho } \frac{\partial \psi _{\gamma, m, h}}{\partial \phi } d\gamma \\ H_{\phi }^{\TM} &=& - \frac{\partial \psi }{\partial \rho } = \sum _m \int_\gamma f_m^{\TM} (\gamma) \left( -\frac{\partial \psi _{\gamma, m, h}}{\partial \rho} \right) d\gamma \end{eqnarray} TM波の横断面内電界成分は, \begin{eqnarray} E_{\rho }^{\TM} &=& \frac{1}{j\omega \epsilon} \frac{\partial ^2 \psi }{\partial \rho \partial z} \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{1}{j\omega \epsilon} \frac{\partial ^2 \psi _{\gamma, m, h}}{\partial \rho \partial z} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{-jh}{j\omega \epsilon} \frac{\partial \psi _{\gamma, m, h}}{\partial \rho} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) Z^{\TM} \left( -\frac{\partial \psi _{\gamma, m, h}}{\partial \rho} \right) d\gamma \\ E_{\phi }^{\TM} &=& \frac {1}{j\omega \epsilon} \frac{1}{\rho } \frac{\partial ^2 \psi }{\partial \phi \partial z} \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{1}{j\omega \epsilon} \frac{1}{\rho} \frac{\partial ^2 \psi _{\gamma, m, h}}{\partial \phi \partial z} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{-jh}{j\omega \epsilon} \frac{1}{\rho} \frac{\partial \psi _{\gamma, m, h}}{\partial \phi} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) Z^{\TM} \left( -\frac{1}{\rho} \frac{\partial \psi _{\gamma, m, h}}{\partial \phi} \right) d\gamma \end{eqnarray} ここで, \begin{align} &Z^{\TM} \equiv \frac{h}{\omega \epsilon} = \frac{k}{\omega \epsilon} \cdot \frac{h}{k} = Z_w \frac{h}{k} \left( \equiv \frac{1}{Y^{\TM}} \right) \\ &Z_w = \frac{k}{\omega \epsilon} = \sqrt{\frac{\mu}{\epsilon}} = \frac{1}{Y_w} \end{align} これより,TM(no $H_z$)波の各成分は, \begin{eqnarray} E_{\rho }^{\TM} &=& -Z_w \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{h}{k} \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \sin \\ \cos \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ E_{\phi }^{\TM} &=& -Z_w \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{h}{k} \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \cos \\ -\sin \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ E_z^{^{\TM}} &=& \frac{1}{j\omega \epsilon} \sum _m \int_\gamma f_m^{^{\TM}} (\gamma) \gamma^2 J_m ( \gamma \rho ) \ \begin{matrix} \sin \\ \cos \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ H_{\rho }^{\TM} &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \cos \\ -\sin \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ H_{\phi }^{\TM} &=& -\sum _m \int_\gamma f_m^{\TM} (\gamma) \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \sin \\ \cos \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \end{eqnarray} 上側と下側を入れ換えて, \begin{eqnarray} E_{\rho }^{\TM} &=& -Z_w \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{h}{k} \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \cos \\ \sin \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ E_{\phi }^{\TM} &=& -Z_w \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac{h}{k} \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} -\sin \\ \cos \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ E_z^{^{\TM}} &=& \frac{1}{j\omega \epsilon} \sum _m \int_\gamma f_m^{^{\TM}} (\gamma) \gamma^2 J_m ( \gamma \rho ) \ \begin{matrix} \cos \\ \sin \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ H_{\rho }^{\TM} &=& \sum _m \int_\gamma f_m^{\TM} (\gamma) \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} -\sin \\ \cos \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ H_{\phi }^{\TM} &=& -\sum _m \int_\gamma f_m^{\TM} (\gamma) \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \cos \\ \sin \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \end{eqnarray} また, \begin{align} &\cos (m\phi + \alpha_m) \equiv \begin{matrix} \cos \\ \sin \end{matrix} \ m \phi \ \ \ \ \ \begin{matrix} (\alpha_m =0) \\ (\alpha_m = -\pi/2) \end{matrix} \\ &\bar{f}_m^{\TM} \equiv \frac{Z_w}{k} f_m^{\TM} \end{align} とおくと, \begin{align} &-\sin (m\phi + \alpha_m) = \begin{matrix} -\sin \\ \cos \end{matrix} \ m \phi \ \ \ \ \ \begin{matrix} (\alpha_m =0) \\ (\alpha_m = -\pi/2) \end{matrix} \\ &f_m^{\TM} = \frac{k}{Z_w} \bar{f}_m^{\TM} = Y_w \bar{f}_m^{\TM} k \end{align} これより, \begin{eqnarray} E_{\rho }^{\TM} &=& -\sum _m \int_\gamma \bar{f}_m^{\TM} (\gamma) h \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \cos (m\phi + \alpha_m) e^{-jhz} d\gamma \\ E_{\phi }^{\TM} &=& \sum _m \int_\gamma \bar{f}_m^{\TM} (\gamma) h \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \sin (m\phi + \alpha_m) e^{-jhz} d\gamma \\ E_z^{\TM} &=& -j \sum _m \int_\gamma \bar{f}_m^{\TM} (\gamma) \gamma^2 J_m ( \gamma \rho ) \cos (m\phi + \alpha_m) e^{-jhz} d\gamma \\ H_{\rho }^{\TM} &=& -Y_w \sum _m \int_\gamma \bar{f}_m^{\TM} (\gamma) k \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \sin (m\phi + \alpha_m) e^{-jhz} d\gamma \\ H_{\phi }^{\TM} &=& -Y_w \sum _m \int_\gamma \bar{f}_m^{\TM} (\gamma) k \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \cos (m\phi + \alpha_m) e^{-jhz} d\gamma \end{eqnarray}