5.3 TE波

 TE波の電界の$z$成分は$E_z^{\TE} = 0$,磁界の$z$成分$H_z^{\TE} $は, \begin{eqnarray} H_z^{\TE} &=& \frac{1}{j\omega \epsilon} \left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac{1}{j\omega \mu} \left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi _{\gamma, m, h} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac{\gamma^2}{j\omega \mu} \psi _{\gamma, m, h} d\gamma \end{eqnarray} ただし,$f_m^{\TE} (\gamma)$はTE波の円筒波スペクトラムを示す.また,$z$軸に直交する横断面内電界成分は, \begin{eqnarray} E_{\rho }^{\TE} &=& -\frac{1}{\rho } \frac{\partial \psi }{\partial \phi } = \sum _m \int_\gamma f_m^{\TE} (\gamma) \left( -\frac{1}{\rho } \frac{\partial \psi _{\gamma, m, h}}{\partial \phi } \right) d\gamma \\ E_{\phi }^{\TE} &=& \frac{\partial \psi }{\partial \rho } = \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac{\partial \psi _{\gamma, m, h}}{\partial \rho} d\gamma \end{eqnarray} TE波の横断面内磁界成分は, \begin{eqnarray} H_{\rho }^{\TE} &=& \frac{1}{j\omega \mu} \frac{\partial ^2 \psi }{\partial \rho \partial z} \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac{1}{j\omega \mu} \frac{\partial ^2 \psi _{\gamma, m, h}}{\partial \rho \partial z} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac{-jh}{j\omega \mu} \frac{\partial \psi _{\gamma, m, h}}{\partial \rho} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TE} (\gamma) Y^{\TE} \left( -\frac{\partial \psi _{\gamma, m, h}}{\partial \rho} \right) d\gamma \\ H_{\phi }^{\TE} &=& \frac {1}{j\omega \mu} \frac{1}{\rho } \frac{\partial ^2 \psi }{\partial \phi \partial z} \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac{1}{j\omega \mu} \frac{1}{\rho} \frac{\partial ^2 \psi _{\gamma, m, h}}{\partial \phi \partial z} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac{-jh}{j\omega \mu} \frac{1}{\rho} \frac{\partial \psi _{\gamma, m, h}}{\partial \phi} d\gamma \nonumber \\ &=& \sum _m \int_\gamma f_m^{\TE} (\gamma) Y^{\TE} \left( -\frac{1}{\rho} \frac{\partial \psi _{\gamma, m, h}}{\partial \phi} \right) d\gamma \end{eqnarray} ここで, \begin{align} &Y^{\TE} \equiv \frac{h}{\omega \mu} = \frac{k}{\omega \mu} \cdot \frac{h}{k} = Y_w \frac{h}{k} \left( \equiv \frac{1}{Z^{\TE}} \right) \\ &Y_w = \frac{k}{\omega \mu} = \sqrt{\frac{\epsilon}{\mu}} = \frac{1}{Z_w} \end{align} ベッセル関数の関係式 \begin{gather} \frac{d J_m (\gamma \rho )}{d \rho } = \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \\ J_{m}(\gamma \rho ) = \frac{\gamma \rho }{2m} \{ J_{m-1}(\gamma \rho ) + J_{m+1}(\gamma \rho ) \} \end{gather} を用いて微分等を行うと, \begin{eqnarray} \frac{\partial \psi _{\gamma, m, h}}{\partial \rho} &=& \frac{\partial J_m ( \gamma \rho )}{\partial \rho} \cdot \begin{matrix} \sin \\ \cos \end{matrix} \ m \phi \cdot e^{-jhz} \nonumber \\ &=& \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \cdot \begin{matrix} \sin \\ \cos \end{matrix} \ m \phi \cdot e^{-jhz} \\ \frac{1}{\rho } \frac{\partial \psi _{\gamma, m, h}}{\partial \phi} &=& \frac{1}{\rho } J_m(\gamma \rho ) \cdot m \ \begin{matrix} \cos \\ -\sin \end{matrix} \ m \phi \cdot e^{-jhz} \nonumber \\ &=& \frac{1}{\rho } \left[ \frac {\gamma \rho}{2m} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \right] m \ \begin{matrix} \cos \\ -\sin \end{matrix} \ m \phi \cdot e^{-jhz} \nonumber \\ &=& \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \cdot \begin{matrix} \cos \\ -\sin \end{matrix} \ m \phi \cdot e^{-jhz} \end{eqnarray} これより,TE(no $E_z$)波の各成分は, \begin{eqnarray} E_{\rho }^{\TE} &=& \mp \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \cos \\ \sin \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ E_{\phi }^{\TE} &=& \pm \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \sin \\ -\cos \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ H_{\rho }^{\TE} &=& \mp Y_w \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac{h}{k} \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \sin \\ -\cos \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ H_{\phi }^{\TE} &=& \mp Y_w \sum _m \int_\gamma f_m^{\TE} (\gamma) \frac{h}{k} \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \begin{matrix} \cos \\ \sin \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \\ H_z^{\TE} &=& \pm \frac{1}{j\omega \mu} \sum _m \int_\gamma f_m^{\TE} (\gamma) \gamma^2 J_m ( \gamma \rho ) \ \begin{matrix} \sin \\ -\cos \end{matrix} \ m \phi \cdot e^{-jhz} d\gamma \end{eqnarray} ここで, \begin{eqnarray} \cos \left( m\phi -\frac{\pi}{2} \right) &=& \cos m \phi \cos \frac{\pi}{2} + \sin m \phi \sin \frac{\pi}{2} \nonumber \\ &=& \sin m\phi \end{eqnarray} より, \begin{gather} \cos (m\phi + \alpha_m) \equiv \begin{matrix} \cos \\ \sin \end{matrix} \ m \phi \ \ \ \ \ \begin{matrix} (\alpha_m = 0) \\ (\alpha_m = -\pi/2) \end{matrix} \end{gather} ここで, \begin{gather} \bar{f}_m^{\TE} \equiv \mp \frac{1}{k} f_m^{\TE} \end{gather} とおく.また, \begin{eqnarray} \sin \left( m\phi -\frac{\pi}{2} \right) &=& \sin m \phi \cos \frac{\pi}{2} + \cos m \phi \sin \frac{\pi}{2} \nonumber \\ &=& -\cos m\phi \end{eqnarray} ゆえ, \begin{gather} \sin (m\phi + \alpha_m) = \begin{matrix} \sin \\ -\cos \end{matrix} \ m \phi \ \ \ \ \ \begin{matrix} (\alpha_m = 0) \\ (\alpha_m = -\pi/2) \end{matrix} \end{gather} また, \begin{gather} Y_w f_m^{\TE} \frac{h}{k} = \mp Y_w \bar{f}_m^{\TE} h \end{gather} これより, \begin{eqnarray} E_{\rho }^{\TE} &=& \sum _m \int_\gamma \bar{f}_m^{\TE} (\gamma) k \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \cos (m\phi + \alpha_m) e^{-jhz} d\gamma \\ E_{\phi }^{\TE} &=& -\sum _m \int_\gamma \bar{f}_m^{\TE} (\gamma) k \frac {\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \sin (m\phi + \alpha_m) e^{-jhz} d\gamma \\ H_{\rho }^{\TE} &=& Y_w \sum _m \int_\gamma \bar{f}_m^{\TE} (\gamma) h \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )-J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \sin (m\phi + \alpha_m) e^{-jhz} d\gamma \\ H_{\phi }^{\TE} &=& Y_w \sum _m \int_\gamma \bar{f}_m^{\TE} (\gamma) h \frac{\gamma }{2} \{ J_{m-1}(\gamma \rho )+J_{m+1}(\gamma \rho ) \} \nonumber \\ &&\cdot \cos (m\phi + \alpha_m) e^{-jhz} d\gamma \\ H_z^{\TE} &=& j Y_w \sum _m \int_\gamma \bar{f}_m^{\TE} (\gamma) \gamma^2 J_m ( \gamma \rho ) \sin (m\phi + \alpha_m) e^{-jhz} d\gamma \end{eqnarray}