5.2 ベクトルポテンシャルを用いた解析
TM(no $H_z$)波の電磁界
$\VEC{H}^{\TM}$,$\VEC{E}^{\TM}$
は,ベクトルポテンシャルを$\VEC{A} = \psi \VEC{a} _z$とおいて求められ,次のようになる.
\begin{eqnarray}
\VEC{H}^{\TM}
&=& \nabla \times \VEC{A}
\nonumber \\
&=& \nabla \times ( \psi \VEC{a} _z )
\nonumber \\
&=& \nabla \psi \times \VEC{a} _z + \psi \nabla \times \VEC{a} _z
\nonumber \\
&=& \nabla \psi \times \VEC{a} _z
\nonumber \\
&=& \left( \frac{\partial \psi }{\partial \rho } \VEC{a} _{\rho }
+ \frac{1}{\rho } \frac{\partial \psi }{\partial \phi } \VEC{a} _{\phi }
+ \frac{\partial \psi }{\partial z} \VEC{a} _z \right) \times \VEC{a} _z
\nonumber \\
&=& - \frac{\partial \psi }{\partial \rho } \VEC{a} _{\phi }
+ \frac{1}{\rho } \frac{\partial \psi }{\partial \phi } \VEC{a} _{\rho }
\nonumber \\
&\equiv& H_{\rho }^{\TM} \VEC{a} _{\rho }
+ H_{\phi }^{\TM} \VEC{a} _{\phi } + H_z^{\TM} \VEC{a} _z
\end{eqnarray}
\begin{eqnarray}
\VEC{E}^{\TM}
&=& - j\omega \mu \VEC{A}
+ \frac{1}{j\omega \epsilon} \nabla (\nabla \cdot \VEC{A})
\nonumber \\
&=& - j\omega \mu (\psi \VEC{a} _z)
+ \frac{1}{j\omega \epsilon} \nabla \{ \nabla \cdot (\psi \VEC{a} _z) \}
\nonumber \\
&=& - j\omega \mu (\psi \VEC{a} _z)
+ \frac{1}{j\omega \epsilon} \nabla (\VEC{a} _z \cdot \nabla \psi )
\nonumber \\
&=& - j\omega \mu (\psi \VEC{a} _z)
+ \frac{1}{j\omega \epsilon} \nabla \frac{\partial \psi}{\partial z}
\nonumber \\
&=& - j\omega \mu (\psi \VEC{a} _z)
+ \frac{1}{j\omega \epsilon} \left(
\frac{\partial ^2 \psi }{\partial \rho \partial z} \VEC{a} _{\rho }
+ \frac{1}{\rho } \frac{\partial ^2 \psi }{\partial \phi \partial z}
\VEC{a} _{\phi }
+ \frac{\partial ^2 \psi}{\partial z ^2} \VEC{a} _z \right)
\nonumber \\
&=& \frac{1}{j\omega \epsilon} \frac{\partial ^2 \psi }{\partial \rho \partial z}
\VEC{a} _{\rho }
+ \frac {1}{j\omega \epsilon} \frac{1}{\rho }
\frac{\partial ^2 \psi }{\partial \phi \partial z} \VEC{a} _{\phi }
+ \frac{1}{j\omega \epsilon}
\left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi
\VEC{a} _z
\nonumber \\
&\equiv& E_{\rho }^{\TM} \VEC{a} _{\rho }
+ E _{\phi }^{\TM} \VEC{a} _{\phi } + E_z^{\TM} \VEC{a} _z
\end{eqnarray}
これより,TM波の電磁界$\VEC{E}^{\TM}$,$\VEC{H}^{\TM}$の円筒座標系の各成分は,
\begin{align}
&E_{\rho }^{\TM}
= \frac{1}{j\omega \epsilon} \frac{\partial ^2 \psi }{\partial \rho \partial z}
\\
&E_{\phi }^{\TM}
= \frac {1}{j\omega \epsilon} \frac{1}{\rho } \frac{\partial ^2 \psi }{\partial \phi \partial z}
\\
&E_z^{\TM}
= \frac{1}{j\omega \epsilon} \left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi
\\
&H_{\rho }^{\TM}
= \frac{1}{\rho } \frac{\partial \psi }{\partial \phi }
\\
&H_{\phi }^{\TM}
= - \frac{\partial \psi }{\partial \rho }
\\
&H_z^{\TM} = 0
\end{align}
同様にして,TE(no $E_z$)波の電磁界
$\VEC{E}^{\TE}$,$\VEC{H}^{\TE}$
は電気的ベクトルポテンシャル($\VEC{E}^{\TE} = \nabla \times \VEC{F}$)
を$\VEC{F} = \psi \VEC{a} _z$とおいて得られ,各成分は(導出省略),
\begin{align}
&E_{\rho }^{\TE}
= -\frac{1}{\rho } \frac{\partial \psi }{\partial \phi }
\\
&E_{\phi }^{\TE}
= \frac{\partial \psi }{\partial \rho }
\\
&E_z^{\TE} = 0
\\
&H_{\rho }^{\TE}
= \frac{1}{j\omega \mu} \frac{\partial ^2 \psi }{\partial \rho \partial z}
\\
&H_{\phi }^{\TE}
= \frac {1}{j\omega \mu} \frac{1}{\rho } \frac{\partial ^2 \psi }{\partial \phi \partial z}
\\
&H_z^{\TE}
= \frac{1}{j\omega \mu} \left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi
\end{align}
これらの方程式の解を各々求めれば$\psi$の一般解
$\psi _{k_{\rho }, m, k_{z} } $(elementary wave functions)が得られ,次のようになる.
\begin{gather}
\psi _{\gamma, m, h}(\rho, \phi, z)
= J_m ( \gamma \rho )
%{ \sin m \phi \brace \cos m \phi}
\ \begin{matrix} \sin \\ \cos \end{matrix} \ m \phi \cdot
e^{-jhz} \ \ \ \ \ \rho = 0 \ \ \mbox{included}
\end{gather}
ここで,
\begin{gather}
k^2 = h^2 + \gamma ^2
\end{gather}
ただし,
$h(m \phi)$は$\psi (\phi ) = \psi (\phi + 2 \pi )$を満たす周期関数であるから,
$m$は整数となる.そして,次式が得られる.
\begin{align}
&\frac{\partial \psi _{\gamma, m, h}}{\partial z}
= -jh \psi _{\gamma, m, h}
\\
&\left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi _{\gamma, m, h}
= (-h^2 + k^2) \psi _{\gamma, m, h}
= \gamma ^2 \psi _{\gamma, m, h}
\end{align}