5.2 ベクトルポテンシャルを用いた解析

 TM(no $H_z$)波の電磁界 $\VEC{H}^{\TM}$,$\VEC{E}^{\TM}$ は,ベクトルポテンシャルを$\VEC{A} = \psi \VEC{a} _z$とおいて求められ,次のようになる. \begin{eqnarray} \VEC{H}^{\TM} &=& \nabla \times \VEC{A} \nonumber \\ &=& \nabla \times ( \psi \VEC{a} _z ) \nonumber \\ &=& \nabla \psi \times \VEC{a} _z + \psi \nabla \times \VEC{a} _z \nonumber \\ &=& \nabla \psi \times \VEC{a} _z \nonumber \\ &=& \left( \frac{\partial \psi }{\partial \rho } \VEC{a} _{\rho } + \frac{1}{\rho } \frac{\partial \psi }{\partial \phi } \VEC{a} _{\phi } + \frac{\partial \psi }{\partial z} \VEC{a} _z \right) \times \VEC{a} _z \nonumber \\ &=& - \frac{\partial \psi }{\partial \rho } \VEC{a} _{\phi } + \frac{1}{\rho } \frac{\partial \psi }{\partial \phi } \VEC{a} _{\rho } \nonumber \\ &\equiv& H_{\rho }^{\TM} \VEC{a} _{\rho } + H_{\phi }^{\TM} \VEC{a} _{\phi } + H_z^{\TM} \VEC{a} _z \end{eqnarray} \begin{eqnarray} \VEC{E}^{\TM} &=& - j\omega \mu \VEC{A} + \frac{1}{j\omega \epsilon} \nabla (\nabla \cdot \VEC{A}) \nonumber \\ &=& - j\omega \mu (\psi \VEC{a} _z) + \frac{1}{j\omega \epsilon} \nabla \{ \nabla \cdot (\psi \VEC{a} _z) \} \nonumber \\ &=& - j\omega \mu (\psi \VEC{a} _z) + \frac{1}{j\omega \epsilon} \nabla (\VEC{a} _z \cdot \nabla \psi ) \nonumber \\ &=& - j\omega \mu (\psi \VEC{a} _z) + \frac{1}{j\omega \epsilon} \nabla \frac{\partial \psi}{\partial z} \nonumber \\ &=& - j\omega \mu (\psi \VEC{a} _z) + \frac{1}{j\omega \epsilon} \left( \frac{\partial ^2 \psi }{\partial \rho \partial z} \VEC{a} _{\rho } + \frac{1}{\rho } \frac{\partial ^2 \psi }{\partial \phi \partial z} \VEC{a} _{\phi } + \frac{\partial ^2 \psi}{\partial z ^2} \VEC{a} _z \right) \nonumber \\ &=& \frac{1}{j\omega \epsilon} \frac{\partial ^2 \psi }{\partial \rho \partial z} \VEC{a} _{\rho } + \frac {1}{j\omega \epsilon} \frac{1}{\rho } \frac{\partial ^2 \psi }{\partial \phi \partial z} \VEC{a} _{\phi } + \frac{1}{j\omega \epsilon} \left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi \VEC{a} _z \nonumber \\ &\equiv& E_{\rho }^{\TM} \VEC{a} _{\rho } + E _{\phi }^{\TM} \VEC{a} _{\phi } + E_z^{\TM} \VEC{a} _z \end{eqnarray} これより,TM波の電磁界$\VEC{E}^{\TM}$,$\VEC{H}^{\TM}$の円筒座標系の各成分は, \begin{align} &E_{\rho }^{\TM} = \frac{1}{j\omega \epsilon} \frac{\partial ^2 \psi }{\partial \rho \partial z} \\ &E_{\phi }^{\TM} = \frac {1}{j\omega \epsilon} \frac{1}{\rho } \frac{\partial ^2 \psi }{\partial \phi \partial z} \\ &E_z^{\TM} = \frac{1}{j\omega \epsilon} \left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi \\ &H_{\rho }^{\TM} = \frac{1}{\rho } \frac{\partial \psi }{\partial \phi } \\ &H_{\phi }^{\TM} = - \frac{\partial \psi }{\partial \rho } \\ &H_z^{\TM} = 0 \end{align} 同様にして,TE(no $E_z$)波の電磁界 $\VEC{E}^{\TE}$,$\VEC{H}^{\TE}$ は電気的ベクトルポテンシャル($\VEC{E}^{\TE} = \nabla \times \VEC{F}$) を$\VEC{F} = \psi \VEC{a} _z$とおいて得られ,各成分は(導出省略), \begin{align} &E_{\rho }^{\TE} = -\frac{1}{\rho } \frac{\partial \psi }{\partial \phi } \\ &E_{\phi }^{\TE} = \frac{\partial \psi }{\partial \rho } \\ &E_z^{\TE} = 0 \\ &H_{\rho }^{\TE} = \frac{1}{j\omega \mu} \frac{\partial ^2 \psi }{\partial \rho \partial z} \\ &H_{\phi }^{\TE} = \frac {1}{j\omega \mu} \frac{1}{\rho } \frac{\partial ^2 \psi }{\partial \phi \partial z} \\ &H_z^{\TE} = \frac{1}{j\omega \mu} \left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi \end{align} これらの方程式の解を各々求めれば$\psi$の一般解 $\psi _{k_{\rho }, m, k_{z} } $(elementary wave functions)が得られ,次のようになる. \begin{gather} \psi _{\gamma, m, h}(\rho, \phi, z) = J_m ( \gamma \rho ) %{ \sin m \phi \brace \cos m \phi} \ \begin{matrix} \sin \\ \cos \end{matrix} \ m \phi \cdot e^{-jhz} \ \ \ \ \ \rho = 0 \ \ \mbox{included} \end{gather} ここで, \begin{gather} k^2 = h^2 + \gamma ^2 \end{gather} ただし, $h(m \phi)$は$\psi (\phi ) = \psi (\phi + 2 \pi )$を満たす周期関数であるから, $m$は整数となる.そして,次式が得られる. \begin{align} &\frac{\partial \psi _{\gamma, m, h}}{\partial z} = -jh \psi _{\gamma, m, h} \\ &\left( \frac{\partial ^2 }{\partial z ^2 } + k^2 \right) \psi _{\gamma, m, h} = (-h^2 + k^2) \psi _{\gamma, m, h} = \gamma ^2 \psi _{\gamma, m, h} \end{align}