ベッセル関数の導関数を含む積分公式

不定積分

 ベッセル関数の満たす微分方程式を再記して, \begin{gather} zu''+u'+\left( \alpha ^2 - \frac{\nu ^2}{z^2} \right) zu = 0 \label{eq:a1} \end{gather} 式(\ref{eq:a1})\(\times (zu'+u)\)より, \begin{align} &\left\{ zu''+u'+ \left( \alpha ^2 - \frac{\nu ^2}{z^2} \right) zu \right\} \big( zu'+u \big) = 0 \nonumber \\ &z^2 u''u' + zu^{\prime 2} + (\alpha^2 z^2 - \nu^2 ) uu' + zu''u + u'u + \alpha^2 zu^2 - \frac{\nu^2}{z}u^2 \nonumber \\ &= zu^{\prime 2} - zu^{\prime 2} \nonumber \\ &\Big( zu^{\prime 2} + z^2u'u'' \Big) + \Big\{ \alpha^2 z u^2 + ( \alpha^2 z^2 - \nu^2 ) uu' \Big\} + \big( u'u + zu^{\prime 2} + zu''u \big) \nonumber \\ &= zu^{\prime 2} + \frac{\nu^2}{z}u^2 \nonumber \\ &\frac{d}{dz} \Big( \frac{1}{2} z^2 u^{\prime 2} \Big) + \frac{d}{dz} \Big\{ \frac{1}{2} (\alpha^2z^2 - \nu^2 ) u^2 \Big\} + \frac{d}{dz} \Big( zuu' \Big) \nonumber \\ &= z \left( u^{\prime 2} + \frac{\nu^2}{z^2}u^2 \right) \end{align} 両辺を\(z\) で不定積分して, \begin{gather} \int z \left( u^{\prime 2} + \frac{\nu^2}{z^2}u^2 \right) dz = \frac{z^2}{2} \left\{ u^{\prime 2} + \left( \alpha^2 - \frac{\nu^2}{z^2} \right) u^2 + \frac{2}{z}u'u \right\} \end{gather} これより,次式が得られる. \begin{eqnarray} &&\int \left\{ {J_{\nu } '}^2 (\alpha z) + \frac{\nu ^2}{\alpha ^2 z^2} J_{\nu }^2(\alpha z) \right\} z \ dz \nonumber \\ &=& \frac{z^2}{2} \left\{ {J_{\nu }'}^2 (\alpha z) + \left( 1- \frac{\nu ^2}{\alpha ^2 z^2} \right) J_{\nu }^2 (\alpha z) + \frac{2}{\alpha z} J_{\nu }' (\alpha z) J_{\nu } (\alpha z) \right\} \end{eqnarray} また,\(\alpha \neq \beta\) のとき,次のような不定積分公式が得られる(導出省略). \begin{eqnarray} && \int \left\{ J_{\nu }'(\alpha z) J_{\nu }'(\beta z) + \frac{\nu ^2 }{\alpha \beta z^2 } J_{\nu }(\alpha z) J_{\nu }(\beta z) \right\} z \ dz \nonumber \\ &=& \frac{z}{\alpha ^2 - \beta ^2} \Big\{ \alpha J_{\nu }(\alpha z) J_{\nu }'(\beta z) - \beta J_{\nu }'(\alpha z) J_{\nu }(\beta z) \Big\} \end{eqnarray}

定積分

 得られた不定積分の積分範囲を \([0,a]\) とすれば, \begin{eqnarray} && \int _0^a \left\{ J_{\nu }'(\alpha z) J_{\nu }'(\beta z) + \frac{\nu ^2 }{\alpha \beta z^2 } J_{\nu }(\alpha z) J_{\nu }(\beta z) \right\} z \ dz \nonumber \\ &=& \frac{a}{\alpha ^2 - \beta ^2} \{ \alpha J_{\nu }(\alpha a) J_{\nu }'(\beta z) - \beta J_{\nu }'(\alpha z) J_{\nu }(\beta z) \} \ \ \ (\alpha \neq \beta ) \\ && \int _0^a \left\{ {J_{\nu } '}^2 (\alpha z) + \frac{\nu ^2}{\alpha ^2 z^2} J_{\nu }^2(\alpha z) \right\} z \ dz \nonumber \\ %\hspace{5mm} &=& \frac{a^2}{2} \left\{ {J_{\nu }'}^2 (\alpha a) + \left( 1- \frac{\nu ^2}{\alpha ^2 a^2} \right) J_{\nu }^2 (\alpha a) + \frac{2}{\alpha a} J_{\nu }' (\alpha a) J_{\nu } (\alpha a) \right\} \end{eqnarray} ただし,\(\Re(\nu ) > 0\).