第1種と第2種ベッセル関数の不定積分公式

 \(A\),\(B\) を定数として, \begin{eqnarray} u &=& A J_{\nu } (\alpha z) + B N_{\nu} (\alpha z) \\ u' &=& \frac{du}{dz} = \alpha \Big( A J'_\nu (\alpha z) + B N'_\nu (\alpha z) \Big) \end{eqnarray} とすると, \begin{eqnarray} &&\int z \Big( A J_{\nu } (\alpha z) + B N_\nu (\alpha z) \Big)^2 2dz \nonumber \\ &=& \frac{1}{2} \left\{ z^2 \Big( A J'_\nu (\alpha z) + B N'_\nu (\alpha z) \Big)^2 \right. \left. + \left( z^2 - \frac{\nu ^2}{\alpha ^2} \right) \Big( A J_\nu (\alpha z) + B N_\nu (\alpha z) \Big)^2 \right\} \end{eqnarray} 上式に\(J_\nu\),\(N_\nu\) 各々の公式を用いると次式が得られる. \begin{align} &\int z J_\nu (\alpha z) N_{\nu } (\alpha z) dz \nonumber \\ &= \frac{1}{2} \left\{ z^2 J '_\nu (\alpha z) N_{\nu }' (\alpha z) + \left( z^2 - \frac{\nu ^2}{\alpha ^2} \right) J_\nu (\alpha z) N_\nu (\alpha z) \right\} \label{eq:a4-JN} \end{align} 上の関係式は微分方程式から直接求めることもでき,次のようにすればよい. \begin{gather} zu_1''+u_1'+\left( \alpha ^2 - \frac{\nu ^2}{z^2} \right) zu_1 = 0 \label{eq:a1-u1} \\ zu_2''+u_2'+\left( \alpha ^2 - \frac{\nu ^2}{z^2} \right) zu_2 = 0 \label{eq:a2-u2} \end{gather} として\(u_1\),\(u_2\)を考え, 式\eqref{eq:a1-u1}\(\times u_2'+\)式\eqref{eq:a2-u2}\(\times u_1'\)より, \begin{align} &\left\{ zu_1''+u_1'+ \left( \alpha ^2 - \frac{\nu ^2}{z^2} \right) zu_1 \right\} u_2' + \left\{ zu_2''+u_2'+ \left( \beta ^2 - \frac{\nu ^2}{z^2} \right) zu_2 \right\} u_1' = 0 \nonumber \\ &2u_1'u_2' + z \big( u_1''u_2'+u_1'u_2'' \big) + \left( \alpha ^2 - \frac{\nu ^2}{z^2} \right) z \big( u_1u_2' + u_1'u_2 \big) = 0 \nonumber \\ &2zu_1'u_2' + z^2 \big( u_1''u_2'+u_1'u_2'' \big) + \big( \alpha^2 z^2 - \nu^2 \big) \big( u_1u_2' + u_1'u_2 \big) = 0 \nonumber \end{align} \begin{gather} \frac{d}{dz} \Big( z^2u_1'u_2' \big) + \big( \alpha^2 z^2 - \nu^2 \big) \frac{d}{dz} \Big( u_1 u_2 \Big) = 0 \end{gather} さらに, \begin{align} &\frac{d}{dz} \Big( z^2u_1' u_2' -\nu^2 u_1u_2 \Big) + \alpha^2 z^2 \frac{d}{dz} \Big( u_1 u_2 \Big) = 0 \nonumber \\ &\frac{d}{dz} \Big( z^2u_1' u_2' -\nu^2 u_1u_2 \Big) + \alpha ^2 \frac{d}{dz} \Big( z^2 u_1u_2 \Big) = \alpha^2 \cdot 2z u_1 u_2 \end{align} 両辺を\(z\) で不定積分して, \begin{gather} z^2u_1' u_2' -\nu^2 u_1u_2+\alpha ^2 z^2 u_1u_2 = 2\alpha^2 \int z u_1 u_2 dz \end{gather} よって,\(\alpha \neq 0\)のとき次式となり,式\eqref{eq:a4-JN}が得られる. \begin{gather} \int zu_1 u_2 dz = \frac{1}{2} \left\{ \frac{z^2}{\alpha^2} u_1' u_2' + \left( z^2 - \frac{\nu ^2}{\alpha ^2} \right) u_1 u_2 \right\} \end{gather}