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CHAPTER 1

はじめに

　電磁波理論の基礎として，まず磁気的ベクトルポテンシャルおよび電気的ベクトルポテン
シャルの導入から始め，双対性の概念や平面波の性質といった基本的事項を解説する．続い
て，TE波および TM波の特徴，ポアソン方程式とスカラー・グリーン関数，さらに自由空
間におけるスカラー・グリーン関数の構成法について詳述する．また，体積等価定理，ポク
リントン方程式およびハレン方程式といったよく知られている積分方程式について言及し，
あわせて相反定理，モード関数の直交性，境界条件の取り扱い，影像法，および平面波の反
射・透過に関する基礎的事項を体系的に説明する．

1.1 電磁波超入門

1.1.1 磁気的ベクトルポテンシャル

ポテンシャル（potentials）と呼ばれる補助的な関数を導入すると電磁界解析が容易にな
ることが多い．いま，電流 J によって生じる磁束密度B から磁気的ベクトルポテンシャル
（magnetic vector potential）A を，

1



図 1.1. 磁気的ベクトルポテンシャルのイメージ図（ChatGPT）

B ≡ ∇ × A (1.1)

によって定義すると，次式が成り立つ*1．

(∇2 + k2)A = −µJ (1.2)

ただし，k は波数，µ は透磁率を示す．B = µH より，磁界 H および電界 E は（導出
省略），

H = 1
µ

∇ × A, (1.3)

E = −jω
(

A + 1
k2 ∇∇ · A

)
(1.4)

ただし，ω は角周波数を示し，電磁界が ejωt の因子を持つことを前提としている．

1.1.2 双対性

2つの異なる現象を記述する方程式が同じ数学的形式をとる場合，それらの解もまた同じ
数学的形式をとり，これを双対性（concept of duality）という．Maxwellの方程式に仮想
的な磁流M を導入すると，双対方程式（dual cqualion）となる．

*1 A の選択は一意ではない．B を変えずにスカラー場の勾配を A に加えることができ，この性質をゲー
ジ自由度（Gauge Freedom）という．A の様々な定式化が可能で，中でもローレンツ・ゲージ（Lorentz
Gauge）がよく用いられる．
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図 1.2. 双対性のイメージ図（ChatGPT）

この磁流M *2より，電気的ベクトルポテンシャル（electric vector potential）F (= −∇×F )
が定義でき，次の双対性

A → F ,

J → M ,

E → H ,

H → −E,

ε → µ,

µ → ε.

を適用すれば，次式が得られる．

(∇2 + k2)F = −εM (1.5)

また，

E = −1
ε
∇ × F , (1.6)

H = −jω
(

F + 1
k2 ∇∇ · F

)
(1.7)

1.1.3 平面波

電磁流源がない場合，ベクトルポテンシャルを ψ(r) uz とおくと，Helmholtz方程式は，(
∇2 + k2

)
ψ(r) = 0. (1.8)

*2 電気磁気学 II で示したように，微小電流ループが磁気双極子と等価であり，磁気双極子は電気双極子と双
対的である．電気双極子を電気ダイポールに拡張して考えると，微小電流ループは電気ダイポールと双対
的であるといえる．
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直角座標系 (x, y, z) を考え，変数分離形

ψ(r) = X(x)Y (y)Z(z) (1.9)

とすると，

d2X

dx2 + k2
xX(x) = 0, d2Y

dy2 + k2
yY (y) = 0, d2Z

dz2 + k2
zZ(z) = 0. (1.10)

ただし，

k2 = k2
x + k2

y + k2
z . (1.11)

よって，X(x) の解としては e±jkxx，Y (y) は e±jkyy，Z(z) は e±jkzz を考えればよい．し
たがって，±ur 方向に伝搬する平面波（plane wave）は，

図 1.3. 平面波のイメージ図（ChatGPT）

ψ(r) = e∓jkxxe∓jkyye∓jkzz = e∓jkt·ρe∓jkzz = e∓jk·r = e∓jkur·r. (1.12)

ここで，k は波数ベクトル，r は位置ベクトルを示し，

k = kur = ktut + kzuz = kxux + kyuy + kzuz,

r = ρ + zuz = xux + yuy + zuz. (1.13)

1.2 TE波とTM波

• TE波 (Transverse Electric wave)は，電場が基準方向に垂直な電磁波で，電界はそ
の基準方向に垂直な成分のみからなる．

• TM波 (Transverse Magnetic wave)は，磁場が基準方向に垂直な電磁波で，磁界は
その基準方向に垂直な成分のみからなる．
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ここでは，z 軸方向を基準方向にとり，説明していく．

図 1.4. TE 波と TM 波のイメージ図（ChatGPT）

1.2.1 z 軸方向に関するTE波

いま，F = ψ(r)uz = e∓jk·ruz とおくと，

Ef = −1
ε
∇ × F = −1

ε
∇ ×

(
ψ(r)uz

)
= −1

ε
∇ψ(r) × uz = −1

ε

(
∓ jk

)
ψ(r) × uz

= ±j

ε

(
ktut + kzuz

)
ψ(r) × uz = ±jkt

ε

(
ut × uz

)
ψ(r)

≡ Ef
t + Ef

zuz (1.14)

これより，電界の z 成分 Ef
z，およびこれに直交する Ef

t は，

Ef
z = Ef · uz = 0 (1.15)

Ef
t = Ef (1.16)

となり，TE波を表していることがわかる．また，磁界 Hf は，

Hf = − 1
jωµ

∇ × Ef = − 1
jωµ

∇ ×
(

± jkt
ε

(
ut × uz

)
ψ(r)

)
= ∓ kt

ωεµ
∇ψ(r) ×

(
ut × uz

)
= ∓ kt

ωεµ

(
∓ jk

)
ψ(r) ×

(
ut × uz

)
= jkt
ωεµ

(
ktut + kzuz

)
×
(
ut × uz

)
ψ(r) (1.17)

ここで，ut ⊥ uz ゆえ，

ut × (ut × uz) = −uz (1.18)
uz × (ut × uz) = ut (1.19)
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これより，

Hf = jkt
ωεµ

(−ktuz + kzut)ψ(r)

≡ Hf
t +Hf

z uz (1.20)

したがって，z 軸に直交する磁界のベクトル Hf
t は，

Hf
t = jkt

ε

kz
ωµ

utψ(r) = jkt
ε
YTEutψ(r) (1.21)

ただし，

YTE = 1
ZTE

≡ kz
ωµ

= k

ωµ
· kz
k

= Yw
kz
k

(1.22)

ここで，

Yw = 1
Zw

= k

ωµ
= ωε

k
(1.23)

k2 = ω2εµ (1.24)

このとき，Hf は，

Hf = jkt
ε
YTE

k

kz
ur ×

(
ut × uz

)
ψ(r) = jkt

ε
YTE

k

kz

(
kz
k

ut − kt
k

uz

)
ψ(r) (1.25)

1.2.2 z 軸方向に関するTM波

一方，A = ψ(r)uz = e∓jk·ruz とおき，同様にして求めると（導出省略），

Ha = Ha
t = ∓jkt

µ

(
ut × uz

)
ψ(r) (1.26)

Ha
z = 0 (1.27)

また，

Ea = jkt
µ
ZTM

k

kz
ur ×

(
ut × uz

)
ψ(r) = jkt

µ
ZTM

k

kz

(
kz
k

ut − kt
k

uz

)
ψ(r)

≡ Ea
t + Ea

zuz (1.28)

Ea
t = jkt

µ
ZTMutψ(r) (1.29)

これは TM波を表していることがわかる．ただし，

ZTM = 1
YTM

= kz
ωε

= k

ωε
· kz
k

= Zw
kz
k

(1.30)
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1.2.3 平面波とTE波・TM波との関係

平面波について，z 軸に直交する成分に着目すると，

• (ut × uz) に沿う電界成分は TE波，
• ut に沿う電界成分は TM波

を表すことがわかる．
いま，方向 ur（単位ベクトル）に沿って伝搬する平面波（波数 k）の電界 E の偏波方向
を up（単位ベクトル）とすると，大きさ 1の場合，

E = upe
−jk·r (1.31)

k = kur = ktut + kzuz = kxux + kyuy + kzuz (1.32)

H = Yw
(
ur × E

)
(1.33)

また，

E = −Zw
(
ur × H

)
(1.34)

これを，z 軸に対する TE波，TM波に分解して表すと次のようになる．

E =
{

up · (ut × uz)(ut × uz) + (up · ut)ut + (up · uz)uz

}
e−jk·r

≡ Et + Ezuz (1.35)

ここで，

Et =
{

up · (ut × uz)(ut × uz) + (up · ut)ut

}
e−jk·r (1.36)

ただし，

ur = (ur · ut)ut + (ur · uz)uz (1.37)

1.3 ポアソンの方程式とグリーン関数

1.3.1 静電場のスカラポテンシャル

スカラポテンシャルを Φ，電荷密度を ρ，誘電率を ε とすると，ポアソン（Poisson）の
方程式は，

∇2Φ = −ρ

ε
(1.38)
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で与えられ，観測点 (x, y, z)における Φ は次のようになる．

Φ(x, y, z) =
˚

V

ρ(x0, y0, z0)
4πεR dV0 (1.39)

ただし，

R = |r − r0| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 (1.40)

ここで，r0 および (x0, y0, z0) は電荷のある点の位置ベクトルおよび座標，r および (x, y, z)
は観測点の位置ベクトルおよび座標を示し，領域 V に電荷が分布しているものとする．電
気磁気学の静電界では，式 (1.38)の Φ のかわりに電位 V を用いていた．そして，無限遠
での電位はゼロである．

1.3.2 ディラックのデルタ関数

電荷密度 ρ のかわりに，点 (x′
0, y

′
0, z

′
0) にだけ点電荷をおいた場合を考えてみる．この

場合，ポアソンの式の右辺は，ρ/ε のかわりにディラック（Dirac）のデルタ関数（delta
function）で表すことができる．まず，１次元のデルタ関数について，変数を xとしたとき
次のような関係式がある．

δ(x− x′) =
(

0 (x 6= x′)
∞ (x = x′)

)
= 1
π

lim
a→∞

sin a(x− x′)
x− x′ (1.41)

ˆ ∞

−∞
δ(x− x′)dx = 1 (1.42)

このとき，次式が成り立つ．
ˆ ∞

−∞
f(x)δ(x− x′)dx = f(x′) (1.43)

これを直角座標系において３次元に拡張すると，

δ(x− x′)δ(y − y′)δ(z − z′)

となる．式 (1.39)において，

ρ(x0, y0, z0)
ε

= δ(x0 − x′
0)δ(y0 − y′

0)δ(z0 − z′
0) (1.44)

とすると，

Φ =
˚

V

δ(x0 − x′
0)δ(y0 − y′

0)δ(z0 − z′
0)

4πR dV0 (1.45)

ただし，領域 Vは点電荷のある範囲である．
8



1.3.3 グリーン関数

直角座標成分の 3重積分より，

Φ = 1
4π

ˆ
lz

ˆ
ly

ˆ
lx

δ(x0 − x′
0)δ(y0 − y′

0)δ(z0 − z′
0)√

(x− x0)2 + (y − y0)2 + (z − z0)2
dx0dy0dz0 (1.46)

ただし，lx，ly，lz は直角座標系 (x0, y0, z0) の積分路を各々，示す．デルタ関数の性質より，
ˆ
lx

f(x0)δ(x0 − x′
0)dx0 = f(x′

0) (1.47)

が成り立つので，Φ は次のようになる．

Φ = 1
4π

ˆ
lz

ˆ
ly

δ(y0 − y′
0)δ(z0 − z′

0)√
(x− x′

0)2 + (y − y0)2 + (z − z0)2
dy0dz0 (1.48)

同様にして，y0 に関する積分も，デルタ関数の性質ˆ
ly

f(y0)δ(y0 − y′
0)dy0 = f(y′

0) (1.49)

より，

Φ = 1
4π

ˆ
lz

δ(z0 − z′
0)√

(x− x′
0)2 + (y − y′

0)2 + (z − z0)2
dz0 (1.50)

さらに，z0 に関する積分も，デルタ関数の性質ˆ
lz

f(z0)δ(z0 − z′
0)dz0 = f(z′

0) (1.51)

より，

Φ = 1
4π

1√
(x− x′

0)2 + (y − y′
0)2 + (z − z′

0)2
= 1

4πR′ (1.52)

ここで，

R′ = |r − r′
0| =

√
(x− x′

0)2 + (y − y′
0)2 + (z − z′

0)2 (1.53)

この解がポアソンの方程式に対するグリーン関数（Green’s function）G である．いま，x′
0，

y′
0，z′

0 を，x0，y0，z0 に置き換え，

∇2G(x, y, z|x0, y0, z0) = −δ(x− x0)δ(y − y0)δ(z − z0) (1.54)

を満たすグリーン関数 G は次のようになる．

G(x, y, z|x0, y0, z0) = 1
4πR (1.55)
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このようにグリーン関数がわかれば，任意の電荷 ρ(x0, y0, z0) による Φ を次式によって求
めることができる．

Φ(x, y, z) = 1
ε

˚
V

G(x, y, z|x0, y0, z0)ρ(x0, y0, z0)dV0 (1.56)

位置ベクトル

r = xux + yuy + zuz (1.57)
r0 = x0ux + y0uy + z0uz (1.58)

を用いると，

Φ(r) = 1
ε

˚
V

G(r, r0)ρ(r0)dV0 (1.59)

1.4 自由空間のスカラー・グリーン関数

1.4.1 単位電流源

最も基本的な波源の一つである微少単位電流源を取り上げ，それによる放射を考える．い
ま，電流の向きに沿う単位ベクトルを u とすると，この単位電流源 J は次式で表現できる．

J = uδ(r − r′) (1.60)

ただし，r′ は電流源のある点の位置ベクトル，r は観測点の位置ベクトル，δ はディラック
（Dirac）のデルタ関数（delta function）を示す．これより，非同次ベクトルヘルムホルツ
方程式は，

(∇2 + k2)A = −µuδ(r − r′) (1.61)

簡単のため，電流源を原点におくと r′ = 0，電流の向きを z 軸方向にとると u = uz（uz

は z 軸方向の単位ベクトル）となり，電流源は uzδ(r) で表される．ベクトルポテンシャル
A の z 成分を Az とおくと，

(∇2 + k2)Az = −µδ(r) (1.62)

上式のスカラーの方程式においては，対称性を考慮すると Az は r のみの関数と考えてよ
い．そこで，球座標系 (r, θ, φ) を考え，

∇2Az = 1
r2

∂

∂r

(
r2∂Az

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂Az

∂θ

)
+ 1
r2 sin2 θ

∂2Az
∂φ2 (1.63)
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∂

∂θ
= 0， ∂

∂φ
= 0より，

1
r2

∂

∂r

(
r2∂Az

∂r

)
+ k2Az = −µδ(r) (1.64)

1.4.2 球波動関数

この方程式の右辺を 0 とおいた同次方程式

1
r2

∂

∂r

(
r2∂Az

∂r

)
+ k2Az = 0 (1.65)

は 0 次の球ベッセル関数を解にもつ微分方程式である．

j0(k0r) =
√

π

2k0r
J 1

2
(k0r) (0次の第 1種球ベッセル関数) (1.66)

n0(k0r) =
√

π

2k0r
N 1

2
(k0r) (0次の第 2種球ベッセル関数) (1.67)

あるいは，

k
(1)
0 (k0r) =

√
π

2k0r
H

(1)
1
2

(k0r) (0次の第 1種球ハンケル関数) (1.68)

k
(2)
0 (k0r) =

√
π

2k0r
H

(2)
1
2

(k0r) (0次の第 2種球ハンケル関数) (1.69)

ここで，

k
(1)
0 (k0r) = j0(k0r) + jn0(k0r) (1.70)

k
(2)
0 (k0r) = j0(k0r) − jn0(k0r) (1.71)

より，いずれか一方の組を解としてとればよい．これは球波動関数ともいう．ただし，

• J 1
2
(k0r) : 1

2次の第 1種ベッセル関数
• N 1

2
(k0r) : 1

2次の第 2種ベッセル関数またはノイマン関数
• H

(1)
1
2

(k0r) : 1
2次の第 1種ハンケル関数

• H
(2)
1
2

(k0r) : 1
2次の第 2種ハンケル関数

これらの関数には次のような関係がある．

H
(1)
1
2

(k0r) = J 1
2
(k0r) + jN 1

2
(k0r) (1.72)

H
(2)
1
2

(k0r) = J 1
2
(k0r) − jN 1

2
(k0r) (1.73)
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さらに，ベッセル関数の公式*3より，

J 1
2
(k0r) =

√
2

πk0r
sin k0r (1.74)

N 1
2
(k0r) = −

√
2

πk0r
cos k0r (1.75)

H
(1)
1
2

(k0r) = −j
√

2
πk0r

ejk0r (1.76)

H
(2)
1
2

(k0r) = j

√
2

πk0r
e−jk0r (1.77)

よって，

j0(k0r) =
√

π

2k0r
J 1

2
(k0r) =

√
π

2k0r

√
2

πk0r
sin k0r = sin k0r

k0r
(1.78)

n0(k0r) =
√

π

2k0r
N 1

2
(k0r) =

√
π

2k0r

(
−
√

2
πk0r

cos k0r

)
= −cos k0r

k0r
(1.79)

k
(1)
0 (k0r) =

√
π

2k0r
H

(1)
1
2

(k0r) =
√

π

2k0r

(
−j
√

2
πk0r

ejk0r

)
= −j e

jk0r

k0r
(1.80)

k
(2)
0 (k0r) =

√
π

2k0r
H

(2)
1
2

(k0r) =
√

π

2k0r
j

√
2

πk0r
ejk0r = j

e−jk0r

k0r
(1.81)

いま，+r 方向に伝搬する波を考えると，この同次方程式の解としては 0次の第 2種球ハン
ケル関数 k

(2)
0 (kr) = j

e−jkr

kr
をとればよい．

1.4.3 単位電流源によるベクトルポテンシャル

非同次スカラーヘルムホルツ方程式の両辺を体積積分すると，
˚

V

(∇ · ∇Az + k2Az)dv =
˚

V

{−µδ(r)}dv (1.82)

ここで，式 (1.82)の左辺第 1項を，ガウスの発散定理
˚

V

∇ · adv =
‹
S

a · dS (1.83)

より面積分で表し，式 (1.82)の右辺はデルタ関数の性質
˚

V

δ(r)dv = 1 (1.84)

*3 森口繁一，宇田川かね久，一松信，” 岩波 数学公式 II,” 岩波書店 (1960), ISBN: 9784000055086.
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より，
‹
S

∇Az · dS + k2
˚

V

Azdv = −µ (1.85)

V → 0 を考えると，

lim
V→0

‹
S

∇Az · dS + lim
V→0

k2
˚

V

Azdv = −µ (1.86)

いま，Az ∼ 1/r より上式の第 2項はゼロになる．また，面積分を球面にとると，面積要素
dS = ndS = urr

2 sin θdθdφ より，

lim
V→0

‹
S

(∇Az · ur)r2 sin θdθdφ = −µ (1.87)

上式を計算するために，未定係数を C とおくと Az は次のようになる．

Az = Ck
(2)
0 (kr) = Cj

e−jkr

kr
(1.88)

これより，∇Az · ur は次のようになる．

∇Az · ur = ∂Az
∂r

= jC

k

∂

∂r

(
e−jkr

r

)
= jC

k

(
−jke

−jkr

r
− e−jkr

r2

)

= C
e−jkr

r2

(
r − j

k

)
(1.89)

そして，積分を実行して，未定係数 C を求めると，次のようになる．

lim
V→0

‹
S

(∇Az · ur)r2 sin θdθdφ = lim
V→0

‹
S

C
e−jkr

r2

(
r − j

k

)
r2 sin θdθdφ

= lim
V→0

Ce−jkr
(
r − j

k

)‹
S

sin θdθdφ = lim
V→0

Ce−jkr
(
r − j

k

)
4π

= C
(

− j

k

)
4π = −µ (1.90)

よって，未定係数 C は次のようになる．

C = −j kµ4π (1.91)

したがって，Az は，

Az = Cj
e−jkr

kr
=
(

−j kµ4π

)
j
e−jkr

kr
= µe−jkr

4πr (1.92)

ベクトルポテンシャル A は，

A = Azuz = µe−jkr

4πr uz (1.93)
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よって，電流の向きに沿う単位ベクトル u，電流源のある点の位置ベクトルを r′，観測点
の位置ベクトルを r とおき，一般的な形で A を表すと，

A = µu

4π|r − r′|
e−jk|r−r′| (1.94)

これより，3次元自由空間のスカラー・グリーン関数 G0 は，波源の位置ベクトルを r′，観
測点を r とすると，次のようになる．

G0(r, r′) = e−jk|r−r′|

4π|r − r′|
(1.95)

ここで，

(∇2 + k2)G0(r, r′) = −δ(r, r′) (1.96)

1.4.4 任意電流分布によるベクトルポテンシャル

任意の電流 J によるベクトルポテンシャル A は，

(∇2 + k2)A = −µJ (1.97)

によって与えられ，グリーン関数 G0 を用いれば，次のようにしてベクトルポテンシャルA

を求めることができる．

A(r) = µ

˚
J(r′)G0(r, r′)dV ′ (1.98)

なお，

G0(r, r′) = e−jk|r−r′|

4π|r − r′|
= e−jk|r′−r|

4π|r′ − r|
= G0(r′, r) (1.99)

が成り立ち，これはグリーン関数の対称性の一例である．

1.5 体積等価定理

1.5.1 等価電磁流源

線形，等方性の媒質（誘電率 ε，透磁率 µ）において，Maxwellの方程式は，

∇ × E = −jωµH (1.100)
∇ × H = J + jωεE (1.101)
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同じ電流源 J を，自由空間（誘電率 ε0，透磁率 µ0）においたとき，Maxwellの方程式は，

∇ × E0 = −jωµ0H0 (1.102)
∇ × H0 = J + jωε0E0 (1.103)

いま，両者の電磁界の差（散乱波）を，

Es ≡ E − E0 (1.104)
Hs ≡ H − H0 (1.105)

とおいて，式 (1.100)−式 (1.102)より，

∇ × E − ∇ × E0 = −jωµH + jωµ0H0

∇ × (E − E0) = −jωµ0(H − H0) + jωµ0H − jωµH

∴ ∇ × Es = −jωµ0Hs − jω(µ− µ0)H (1.106)

同様にして，式 (1.101)−式 (1.103)より，

∇ × H − ∇ × H0 = jωεE − jωε0E0

∇ × (H − H0) = jωε0(E − E0) − jωε0E + jωεE

∴ ∇ × Hs = jωε0Es + jω(ε− ε0)E (1.107)

得られた式を，

∇ × Es = −jωµ0Hs − Keq (1.108)
∇ × Hs = jωε0Es + Jeq (1.109)

とおくと，媒質の違いによって生じている散乱波（自由空間中の体積等価波源（polarization
currents）ともいう）として表すことができ，Keq は等価磁流源（equivalent magnetic
current），Jeq は等価電流源（equivalent electric current）を示し，

Keq = jω(µ− µ0)H (1.110)
Jeq = jω(ε− ε0)E (1.111)

これを体積等価定理（volume equivalent theorem）*4 という．

1.5.2 良導体

誘電率が

ε = ε′ − j
σ

ω
(1.112)

*4 G. A. Thiele, “Wire antennas,” in Computer Techniques for Electromagnetics, Chapter 2, R. Mittra,
Ed., Permagon (1973), ISSN: 0074-803X.
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のとき，等価電流源 Jeq は，

Jeq = jω(ε− ε0)E = jω
(
ε′ − j

σ

ω
− ε0

)
E = {σ + jω(ε′ − ε0)} E (1.113)

複素誘電率の虚部が十分小さい場合，

Jeq ' σE (1.114)

強磁性体でなければ，µ ' µ0 ゆえ，

Keq ' 0 (1.115)

良導体（good conductor）はたいていこのような特性となる．

1.6 ポクリントンの積分方程式

電磁流源がある場合のMaxwellの方程式は，

∇ × E = −jωµH − K (1.116)
∇ × H = jωεE + J (1.117)

磁気的ベクトルポテンシャル A とそのスカラーポテンシャル V，電気的ベクトルポテン
シャル F とそのスカラーポテンシャル U を用いて，電界 E および磁界 H は，

E = −jωA − ∇V − 1
ε
∇ × F (1.118)

H = −jωF − ∇U + 1
µ

∇ × A (1.119)

ここで，ローレンツ・ゲージ（Lorenz gauge）（ローレンツの条件）は，

∇ · A = −jωµεV (1.120)
∇ · F = −jωµεU (1.121)

いま，µ = µ0，磁荷 m，磁流 K がない場合（m = 0，K = 0），F = 0，U = 0．また，直
線状の線状導体の散乱問題を考え，電流 J は z 方向成分のみをもつとすると，J = Jaz．
これより，磁気的ベクトルポテンシャルも z 成分のみで，A = Azaz となる．よって，式
(1.118)より電界 E は，

E = −jω(Azaz) − ∇V (1.122)

電界の z 成分 Ez は，

Ez = E · az = −jω(Azaz) · az − (∇V ) · az = −jωAz − ∂V

∂z
(1.123)
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一方，

∇ · A = ∇ · (Azaz) = (∇Az) · az = ∂Az
∂z

= −jωµεV (1.124)

上式を z で微分すると，

∂2Az
∂z2 = −jωµε∂V

∂z

∴
∂V

∂z
= − 1

jωµε

∂2Az
∂z2 (1.125)

これを，式 (1.123)に代入すると，

Ez = −jωAz + 1
jωεµ

∂2Az
∂z2 = 1

jωεµ

(
ω2εµAz + ∂2Az

∂z2

)
(1.126)

ここで，k2 = ω2εµ とおき，

Ez = 1
jωεµ

(
∂2Az
∂z2 + k2Az

)
(1.127)

磁気的ベクトルポテンシャル A の積分形より，dA は，

dA(r) = µG(r, r′)J(r′)dv′ (1.128)

電流 J は z 成分 J のみゆえ，

dAz(r) = µG(r, r′)J(r′)dv′ (1.129)

式 (1.127)より，

dEz = 1
jωεµ

{
∂2

∂z2 (µGJdv′) + k2(µGJdv′)
}

= 1
jωε

(
∂2G

∂z2 + k2G

)
Jdv′ (1.130)

体積積分して，

Ez = 1
jωε

˚ (
∂2G

∂z2 + k2G

)
Jdv′ (1.131)

ここで，観測点を z 軸上にとると位置ベクトル r は，

r = zaz (1.132)

また，半径 a の円筒側面に電流源があるとき，その位置ベクトル r′ は，

r′ = aaρ + z′az (1.133)
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この 2点間の距離 R は，

R = |r − r′| = |−aaρ + (z − z′)az| =
√
a2 + (z − z′)2 (1.134)

円筒座標系 (ρ, φ, z) において ρ = a の円筒側面（円筒の長さは L）にのみ面電流が軸方向
に流れているとき，面積分となって，

Ez = 1
jωε

¨ (
∂2G

∂z2 + k2G

)
JdS′ = 1

jωε

ˆ L
2

− L
2

ˆ 2π

0

(
∂2G

∂z2 + k2G

)
Jadφdz′

= a

jωε

ˆ 2π

0
dφ

ˆ L
2

− L
2

(
∂2G

∂z2 + k2G

)
Jdz′ = 2πa

jωε

ˆ L
2

− L
2

(
∂2G

∂z2 + k2G

)
Jdz′ (1.135)

ここで，

J = I

2πa (1.136)

とおくと，

Ez(z) = 1
jωε

ˆ L
2

− L
2

(
∂2G(z, z′)

∂z2 + k2G(z, z′)
)
I(z′)dz′ (1.137)

円筒は完全導体とすると，電界の接線成分はゼロゆえ，円筒側面上の入射波 Einc と散乱波
Escattering のベクトル和の接線成分が次のようにゼロになる．

(Einc + Escattering)tan = 0 (1.138)

散乱波の z 成分が Ez ゆえ，入射波の z 成分を Einc
z とすると，次式が成り立つ．

Einc
z (z) = − 1

jωε

ˆ L
2

− L
2

(
∂2G(z, z′)

∂z2 + k2G(z, z′)
)
I(z′)dz′ (1.139)

これをポクリントンの積分方程式（Pocklington’s integral equation）*5という．

問題

ポクリントンの積分方程式の被積分関数を，自由空間のグリーン関数の微分などを行い
求めよ．

*5 G. A. Thiele, “Wire antennas,” in Computer Techniques for Electromagnetics, Chapter 2, R. Mittra,
Ed., Permagon (1973), ISSN: 0074-803X.

18



解答

∂2G(z, z′)
∂z2 + k2G(z, z′) = e−jkR

R5

{
(1 + jkR)(2R2 − 3a2) + (kRa)2

}
(1.140)

ここで，

R =
√
a2 + (z − z′)2 (1.141)

1.7 ハレンの積分方程式

十分細い円柱状完全導体（長さ L，半径 a）を 1点給電（デルタギャップ間の電位 V0）した
ダイポールアンテナの電流分布 Iz(z) を求める方法として，ハレンの積分方程式（Hallen’s
integral equation）があり，給電点を z = 0 として中央給電（デルタギャップ間の電位 V0）
した場合，次のようになる．

ˆ L
2

− L
2

Iz(z′)G0(z′, z)dz′ = C cos kz − jV0

2η sin k|z| (1.142)

ただし，µ0 は自由空間の透磁率，G0 は自由空間の３次元グリーン関数，k は波数，η は自
由空間の波動インピーダンスを示し，電流 Iz は z 軸方向に流れているものとする．

1.7.1 ハレンの積分方程式の導出

ハレンの積分方程式を導出しよう．まず，ベクトルポテンシャル A は，

A = µ0

˚
V

J(r′)G0(r, r′)dV ′ (1.143)

ここで，

G0(r, r′) = e−jk|r−r′|

4π|r − r′|
= e−jkR

4πR (1.144)

ただし，J は電流源，G0 は自由空間の３次元グリーン関数，r′ は電流源の位置ベクトル，
r は観測点 (ρ, φ, z) の位置ベクトルを示す．いま，円柱導体は十分細く，電流 Iz が z 軸方
向のみに流れているものと考え，電流源 J を次のようにおく．

J(r′) = Iz(z′)
2πa uz (1.145)
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ただし，a は円筒の半径，uz は z 軸方向の単位ベクトルを示す．これより，ベクトルポテ
ンシャルA の z 成分 Az の式を考えればよいことになり，

Az(r) = µ0

ˆ L
2

− L
2

ˆ 2π

0

Iz(z′)
2πa

e−jkR

4πR adφ′dz′ = µ0

2π

ˆ 2π

0
dφ′
ˆ L

2

− L
2

IzG0dz
′

= µ0

ˆ L
2

− L
2

Iz(z′)G0(R)dz′ (1.146)

ここで，位置ベクトルおよび座標成分のプライムは，電流源の位置に関する変数を示すもの
である．このとき，観測点の位置ベクトル r は，

r = ρuρ + zuz (1.147)

一方，電流は円筒面上ではなく，z 軸上を流れているものと近似すると，位置ベクトル r′

は，次のようになる．

r′ ' z′uz (1.148)

これより，

r − r′ ' ρuρ + (z − z′)uz (1.149)

|r − r′| '
√
ρ2 + (z − z′)2 ≡ R (1.150)

散乱電界 Es は，ベクトルポテンシャル A = Az(ρ, z)uz より次のようになる．

Es = −jω
(
Azuz + 1

k2 ∇∇ · (Azuz)
)

= −jω
(
Azuz + 1

k2 ∇∂Az
∂z

)
(1.151)

電界の z 成分は，

Es · uz = −jω
(
Az + 1

k2
∂2Az
∂z2

)
(1.152)

いま，ギャップ間隔 ∆z に電圧 V0 が印加されているとすると，電界 Ei（z 成分）は，

Ei =


V0

∆z (給電ギャップ間)

0 (otherwise)
(1.153)

境界条件より，円柱導体表面で全電界がゼロとなるので，

Es · uz + Ei = 0 (at ρ = a) (1.154)

を解けばよい．そこで，z = 0 の給電点以外について考えると，

jω

(
Az + 1

k2
∂2Az
∂z2

)
= 0 (給電ギャップ以外) (1.155)

これより，
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• z > 0 のとき，Az = C1 cos kz +D1 sin kz
• z < 0 のとき，Az = C2 cos kz +D2 sin kz

ただし，C1，C2，D1，D2 は未知係数である．まず，Az が z = 0 で連続となるためには
C1 = C2．また，Az が z に関して対称であるためには D1 = −D2．よって，

• z > 0 のとき，Az = C1 cos kz +D1 sin kz
• z < 0 のとき，Az = C1 cos kz −D1 sin kz

これを

jω

(
Az + 1

k2
∂2Az
∂z2

)
= V0

∆z (給電ギャップ間) (1.156)

に代入して，z0 = 0 近傍で積分すると (1 � 2δ ' ∆z)，
ˆ 0+δ

0−δ
jω

(
Az + 1

k2
∂2Az
∂z2

)
dz =

ˆ 0+δ

0−δ

V0

∆zdz

jω

ˆ 0+δ

0−δ
Azdz + jω

k2

[
∂Az
∂z

]0+δ

0−δ
= V0 (1.157)

上式の左辺の第 1項はゼロゆえ，

jω

k2

(
∂Az
∂z

∣∣∣∣
z=0+δ

− ∂Az
∂z

∣∣∣∣
z=0−δ

)
= V0 (1.158)

つまり，Az の導関数の不連続性が給電点の電位差に対応していることになる．

k2

jω
V0 =

[
− C1k sin kz +D1k cos kz

]
z=0+δ

−
[

− C1k sin kz −D1k cos kz
]
z=0−δ

' D1k +D1k = 2D1k (1.159)

よって，

D1 = V0k

j2ω = −j V0

2
√
ε0µ0 = −jV0

µ0

2η (1.160)

ただし，

k = ω
√
ε0µ0, η =

√
µ0

ε0
(1.161)

したがって，ベクトルポテンシャル Az は，

Az = µ0

ˆ L
2

− L
2

Iz(z′)G0(R)dz′ = C1 cos kz +D1 sin k|z|

= C1 cos kz − jV0
µ0

2η sin k|z| (1.162)
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両辺を µ0 で割って，C ≡ C1/µ0 とおくと，次のハレンの積分方程式（Hallen’s integral
equation）が得られる．

ˆ L
2

− L
2

Iz(z′)G0(z′, z)dz′ = C cos kz − jV0

2η sin k|z| (1.163)

これは，給電点を有する直線状のアンテナに対して定式化した初期の積分方程式の例であ
る．導体線路の先端で電流がゼロになる条件を用いれば未知係数 C を決定でき，未知電流
Iz を解く問題となり，後述するモーメント法を用いて数値的に求めることができる．

1.8 無限空間おける相反定理

1.8.1 ローレンツの相反定理

ローレンツの相反定理（Lorentz reciprocity theorem）の積分形より，
‹
S

(Ha × Eb − Hb × Ea) · dS

=
˚

V

(Eb · Ja + Ha · Mb − Ea · Jb − Hb · Ma) dV (1.164)

領域 V の表面 S を電磁流源に対して遠方領域にとると，電界と磁界の関係は，

H =
√
ε

µ
(s × E) (1.165)

で表されるから，面積分の被積分関数は，面 S 上では次のようになる．

Ha × Eb − Hb × Ea = Ea ×
√
ε

µ
(s × Eb) − Eb ×

√
ε

µ
(s × Ea) (1.166)

ここで，ベクトル公式

a × (b × c) = b(a · c) − c(a · b) (1.167)

より，

Ea × (s × Eb) − Eb × (s × Ea)
= s(Ea · Eb) − Eb(Ea · s) − s(Eb · Ea) + Ea(Eb · s)
= −Eb(Ea · s) + Ea(Eb · s)
= 0 (1.168)

上式の最後の項では，Ea および Eb が s に直交していることを用いている．よって，

Ha × Eb − Hb × Ea = 0 (on S) (1.169)
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面積分して，
‹
S

(Ha × Eb − Hb × Ea) · dS = 0 (1.170)

これより，
˚

V

(Eb · Ja + Ha · Mb − Ea · Jb − Hb · Ma) dV = 0 (1.171)

したがって，次式が得られる．
˚

V

(Ea · Jb − Ha · Mb) dV =
˚

V

(Eb · Ja − Hb · Ma) dV (1.172)

1.8.2 リアクション

上式左辺は，電磁界 a の電磁流源に関する電磁界 b のリアクション（reaction）と呼ば
れ，次のように [a, b] によって表される．

[a, b] =
˚

V

(Eb · Ja − Hb · Ma) dV (1.173)

ただし，積分範囲 V は a の電磁流源を含む任意の領域を示し，この電磁流源の分布する領
域 Va のみとしてもよい．同様にして，系 b の電磁流源に関する電磁界 a のリアクション
[b, a] は，

[b, a] =
˚

V

(Ea · Jb − Ha · Mb) dV (1.174)

先に得られた結果より，両リアクションは等しい．

[b, a] = [a, b] (1.175)

このとき，積分範囲は電磁流源を含んでいればよいので，V のかわりに Va + Vb としても
よい．
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1.9 相反定理の応用

1.9.1 等価定理

まず，自由空間中に電磁流源 Ji，Mi だけがある場合を考え，これによって生じる電磁
界を Ei，Hi とする．

図 1.5. 自由空間中に電磁流源 Ji，Mi がある場合

次に，散乱体（領域 V，面 S）をおくと，散乱電磁界Es，Hs が生じる．その結果得られ
る全電磁界を E，H とおくと，

E = Ei + Es (1.176)
H = Hi + Hs (1.177)

領域Vi

Ji, Mi

散乱体

全電磁界E, H（散乱体内部及び外部）

図 1.6. 自由空間中に電磁流源 Ji，Mi，散乱体がある場合

いま，散乱体の表面における電磁界 E，H（on S）より等価面電磁流源 Js，Ms を，

Js = n × H (1.178)
Ms = −n × E (1.179)

で定義し，散乱体のかわりに等価面電磁流 Js，Ms をおく（等価定理）．
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図 1.7. 散乱体のかわりに等価面電磁流 Js，Ms（等価定理）をおいた場合

そして，電磁流源 Ji，Mi はそのままで，取り除いた散乱体の領域（V 内部）の電磁界を
ゼロ，面 S 上には等価面電磁流源 Js，Ms をおくと，領域 V の外側領域の電磁界はE，H

となる．これは，散乱体がある場合の問題を，電磁流源の問題に置き換えて扱おうというも
のである．

図 1.8. 自由空間中に電磁流源 Ji，Mi，散乱体のかわりにおいた等価面電磁流 Js，Ms がある場合

1.9.2 電磁流源がある場合の相反定理

さて，Ji，Mi，Js，Ms によって生じる電磁界 E，H とは独立に，電磁流源 Jm，Mm

によって生じる電磁界を Em，Hm とする．ただし，Jm，Mm は領域 V の内部にあたる領
域にのみ分布しているものとする．これに相反定理を適用すると，

˚
(E · Jm − H · Mm) dV =

˚
{Em · (Ji + Js) − Hm · (Mi + Ms)} dV

(1.180)
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図 1.9. 自由空間中の領域 V（散乱体の領域）に Jm，Mm（テストソース）をおいた場合

積分範囲は最初，全空間と考えてもよい．領域 V では電磁界 E，H がゼロ，一方外側に
は電磁流源 Jm，Mm をおいていないため，上式の左辺はゼロである．よって，

˚
{Em · (Ji + Js) − Hm · (Mi + Ms)} dV = 0 (1.181)

電磁流源の分布している領域に積分範囲をとり，リアクションの形に変形すると，
˚

Vi

(Em · Ji − Hm · Mi) dV +
‹
S

(Em · Js − Hm · Ms) dS = 0 (1.182)

あるいは，

[i,m] + [s,m] = 0 (1.183)

一部，左辺に移項して，

−
˚

Vi

(Em · Ji − Hm · Mi) dV =
‹
S

(Em · Js − Hm · Ms) dS (1.184)

上式左辺は，与えられる電磁流源 Ji，Mi（既知の励振条件）を含む積分，右辺は，散乱体
表面の電磁流 Js，Ms（未知数）を含む積分である．モーメント法では，左辺が励振項，右
辺がインピーダンスマトリクスを含む計算に各々対応し，Em，Hmは試行関数に対応する．

1.9.3 磁流がない場合

磁流がない場合（Mi = 0），Mm = 0とおいて，
˚

Vi

Em · JidV +
‹
S

Em · JsdS = 0 (1.185)

ここで，J = Ji + Js とおくと，
˚

Em · JdV = 0 (1.186)
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これに相反定理を適用すると，次式が得られる．˚
Em · JdV =

˚
E · JmdV = 0 (1.187)

1.10 グリーンの第二定理に基づく積分表示

1.10.1 グリーンの定理

スカラー Φ，ベクトル a について，次のようなベクトルの発散に関する関係式がある．

∇ · (Φa) = (∇Φ) · a + Φ∇ · a (1.188)

いま，ベクトル a の代わりに ∇Ψ を考えると，

∇ · (Φ∇Ψ) = (∇Φ) · (∇Ψ) + Φ∇ · (∇Ψ)
= (∇Φ) · (∇Ψ) + Φ∇2Ψ (1.189)

上式の両辺を体積積分すると次のようになる．˚
V

∇ · (Φ∇Ψ) dV =
˚

V

(
Φ∇2Ψ + ∇Φ · ∇Ψ

)
dV (1.190)

ガウスの発散定理を用いて上式の左辺を面積分で表すと，‹
S

(Φ∇Ψ) · n dS =
˚

V

(
Φ∇2Ψ + ∇Φ · ∇Ψ

)
dV (1.191)

上式の左辺の被積分関数は（∇t は２次元の∇），

(Φ∇Ψ) · n = Φ(∇Ψ) · n = Φ
(

∇tΨ + ∂Ψ
∂n

n

)
· n = Φ ∂Ψ

∂n
(1.192)

と変形できるので，次式が得られる（右辺と左辺は交換している）．
˚

V

(
Φ∇2Ψ + ∇Φ · ∇Ψ

)
dV =

‹
S

Φ ∂Ψ
∂n

dS (1.193)

これをグリーンの第一定理（Green’s first theorem）という．この式の Φ と Ψ を交換す
ると，

˚
V

(
Ψ∇2Φ + ∇Ψ · ∇Φ

)
dV =

‹
S

Ψ ∂Φ
∂n

dS (1.194)

となり，両者を辺々引くと，次式が得られる．
˚

V

(
Φ∇2Ψ − Ψ∇2Φ

)
dV =

‹
S

(
Φ ∂Ψ
∂n

− Ψ ∂Φ
∂n

)
dS (1.195)

これはグリーンの第二定理（Green’s second theorem）である．
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1.10.2 電流源による電磁界の積分表示式

電流源 J および電荷 ρ に対するMaxwellの方程式は，

∇ × E = −jωµH (1.196)
∇ × H = J + jωεE (1.197)
∇ · H = 0 (1.198)

∇ · E = ρ

ε
(1.199)

∇ · J = −jωρ (1.200)

式 (1.196)において回転を求め，式 (1.197)を代入すると，

∇ × ∇ × E = −jωµ∇ × H = −jωµ(J + jωεE) (1.201)

ここで，ベクトル公式

∇ × ∇ × a = ∇(∇ · a) − ∇2a (1.202)

を用いると，

∇(∇ · E) − ∇2E = −jωµJ + k2E (1.203)

式 (1.199)のガウスの定理より，

∇
(
ρ

ε

)
− ∇2E = −jωµJ + k2E (1.204)

さらに，連続の式 (1.200)より，

∇
(

∇ · J

−jωε

)
− ∇2E = −jωµJ + k2E (1.205)

よって，

∇2E + k2E = jωµJ − 1
jωε

∇(∇ · J)

= jωµ
(

J + 1
k2 ∇∇ · J

)
(1.206)

いま，

E = Exux + Eyuy + Ezuz (1.207)
J = Jxux + Jyuy + Jzuz (1.208)

とおき，x成分について表すと，

∇2Ex + k2Ex = jωµ

(
Jx + 1

k2
∂

∂x
(∇ · J)

)
(1.209)
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一方，次式で定義されるグリーン関数 G(r, r′) を考える．

∇2G(r, r′) + k2G(r, r′) = −δ(r − r′) (1.210)

グリーンの第二定理より，
˚

V

(
G(r, r′)∇2Ex(r) − Ex(r)∇2G(r, r′)

)
dV

=
‹
S

(
G(r, r′)∂Ex(r)

∂n
− Ex(r)∂G(r, r′)

∂n

)
dS (1.211)

上式左辺に式 (1.209)および式 (1.210)を代入する．そして，積分領域を十分大きくとると，
右辺の面 S での被積分関数はゼロになるので，

˚
V

[
G(r, r′)

{
jωµ

(
Jx(r) + 1

k2
∂

∂x

(
∇ · J(r)

))
− k2Ex(r)

}

− Ex(r)
(

− δ(r − r′) − k2G(r, r′)
)]
dV = 0 (1.212)

よって，デルタ関数の性質より，

Ex(r′) = −jωµ
˚

V

G(r, r′)
(
Jx(r) + 1

k2
∂

∂x

(
∇ · J(r)

))
dV (1.213)

さらに，グリーン関数の対称性

G(r, r′) = G(r′, r) (1.214)

を用い，また，r，r′ を入れ換えると，次式を得る．

Ex(r) = −jωµ
˚

V

G(r, r′)
(
Jx(r′) + 1

k2
∂

∂x′

(
∇′ · J(r′)

))
dV ′ (1.215)

同様にして，y 成分，z 成分の式が得られ，

Ey(r) = −jωµ
˚

V

G(r, r′)
(
Jy(r′) + 1

k2
∂

∂y′

(
∇′ · J(r′)

))
dV ′ (1.216)

Ez(r) = −jωµ
˚

V

G(r, r′)
(
Jz(r′) + 1

k2
∂

∂z′

(
∇′ · J(r′)

))
dV ′ (1.217)

したがって，ベクトル表示は次のようになる．

E(r) = −jωµ
˚

V

G(r, r′)
(

J(r′) + 1
k2 ∇′∇′ · J(r′)

)
dV ′

= −jωµ
(˚

V

G(r, r′)J(r′)dV ′ + 1
k2

˚
V

G(r, r′)∇′∇′ · J(r′)dV ′
)

(1.218)
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1.11 電磁界の積分表示式について

1.11.1 ベクトルポテンシャルを基にした電磁界の積分表示式の導出

ベクトルポテンシャル A を用いると電界 E，および磁界H は次のようになる．

E(r) = −jω
(

A(r) + 1
k2 ∇∇ · A(r)

)
(1.219)

H(r) = 1
µ

∇ × A(r) (1.220)

ただし，

A(r) = µ

˚
V

G(r, r′)J(r′)dV ′ (1.221)

これより，A を消去すると，

E(r) = −jωµ
(˚

V

G(r, r′)J(r′)dV ′ + 1
k2 ∇∇ ·

˚
V

G(r, r′)J(r′)dV ′
)

(1.222)

H(r) = ∇ ×
˚

V

G(r, r′)J(r′)dV ′ (1.223)

問題

観測点 r に電流源 J がない場合，電界は次のように変形することができる．導出せよ．

E(r) = 1
jωε

∇ × ∇ ×
˚

V

G(r, r′)J(r′)dV ′ (1.224)

ただし，

k2 = ω2µε (1.225)

解答

ベクトル恒等式

∇(∇ · A) = ∇ × ∇ × A − ∇2A (1.226)

および

∇2A + k2A = −µJ (1.227)

より，

1
k2 ∇(∇ · A) = 1

k2 ∇ × ∇ × A − A + µ

k2 J (1.228)
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観測点 r に電流源 J がない場合，電界 E(r)は，

E(r) = −jω
(

A(r) + 1
k2 ∇ × ∇ × A(r) − A(r)

)
(1.229)

= −jω
ω2µε

∇ × ∇ × A(r) = 1
jωµε

∇ × ∇ × A(r)

= 1
jωε

∇ × ∇ ×
˚

V

G(r, r′)J(r′)dV ′

1.11.2 積分表示式の変形

上式の第 2項の積分を I2(r) とおき，若干の変形を行う．

I2(r) ≡ ∇∇ ·
˚

V

G(r, r′)J(r′)dV ′ = ∇
˚

V

∇ ·
(
G(r, r′)J(r′)

)
dV ′ (1.230)

ベクトル公式より，

∇ ·
(
GJ

)
= J · ∇G+G

(
∇ · J

)
(1.231)

上式の ∇ は r に関する微分であるため，第 2項はゼロである．よって，

I2(r) = ∇
˚

V

J(r′) · ∇G(r, r′)dV ′ (1.232)

グリーン関数の対称性（symmetry）を考慮すると，

∇G(r, r′) = −∇′G(r, r′) (1.233)

これより，

I2(r) = −∇
˚

V

J(r′) · ∇′G(r, r′)dV ′ (1.234)

また，ベクトル公式より，

∇′ ·
(
GJ

)
= J · ∇′G+G

(
∇′ · J

)
(1.235)

よって，

I2(r) = −∇
˚

V

{
∇′ ·

(
G(r, r′)J(r′)

)
−G(r, r′)∇′ · J(r′)

}
dV ′

= −∇
‹
S

G(r, r′)J(r′) · dS′ + ∇
˚

V

G(r, r′)∇′ · J(r′)dV ′ (1.236)
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電流源 J は領域 V 内部にあり面 S 上には存在しないため，上式の第 1項はゼロ．さらに，

I2(r) = ∇
˚

V

G(r, r′)∇′ · J(r′)dV ′ =
˚

V

(
∇G(r, r′)

)(
∇′ · J(r′)

)
dV ′

= −
˚

V

(
∇′G(r, r′)

)(
∇′ · J(r′)

)
dV ′ (1.237)

ここで，

∇′
(
G∇′ · J

)
=
(
∇′G

)(
∇′ · J

)
+G∇′

(
∇′ · J

)
(1.238)

より，

I2(r) =
˚

V

G(r, r′)∇′
(
∇′ · J(r′)

)
dV ′ −

˚
V

∇′
(
G(r, r′)∇′ · J(r′)

)
dV ′ (1.239)

いま，任意の定ベクトルを a とおくと，発散定理（divergence theorem）は，
˚

V

∇ ·
(
fa
)
dV =

‹
S

fa · dS

a ·
˚

V

∇f dV = a ·
‹
S

f dS (1.240)

よって，
˚

V

∇f dV =
‹
S

f dS (1.241)

が得られ，これを用いると，

I2(r) =
˚

V

G(r, r′)∇′
(
∇′ · J(r′)

)
dV ′ −

‹
S

G(r, r′)∇′ · J(r′)dS′ (1.242)

電流源 J は領域 V 内部にあって，面 S 上には存在しないため，上式の第 2項はゼロであ
る．したがって，

I2(r) =
˚

V

G(r, r′)∇′∇′ · J(r′)dV ′ (1.243)

これより，電界 E は，

E(r) = −jωµ
(˚

V

G(r, r′)J(r′)dV ′ + 1
k2 ∇∇ ·

˚
V

G(r, r′)J(r′)dV ′
)

= −jωµ
(˚

V

G(r, r′)J(r′)dV ′ + 1
k2

˚
V

G(r, r′)∇′∇′ · J(r′)dV ′
)

(1.244)

これは，グリーンの第二定理を基にした電磁界の積分表示式と一致する．
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1.12 モード関数の直交性

1.12.1 ローレンツの相反定理

誘電率 ¯̄ε，および透磁率 ¯̄µが対称ダイアディクスで与えられる場合について，ローレンツ
の相反定理を導出する．いま，閉じた面 S で囲まれた領域 V に電磁流源が存在するときの
電磁界を考える．そこで，領域 V に電流源 Ja，および等価磁流源Ma があるとき，電磁界
を Ea, Ha とすると，Maxwellの方程式より，

∇ × Ha = jω¯̄ε · Ea + Ja (1.245)
−∇ × Ea = jω ¯̄µ · Ha + Ma (1.246)

また，領域 V に電流源 Jb，等価磁流源 Mb があるときの電磁界を Eb, Hb とすると，
Maxwellの方程式より，

∇ × Hb = jω¯̄ε · Eb + Jb (1.247)
−∇ × Eb = jω ¯̄µ · Hb + Mb (1.248)

電界 Eb と式 (1.245)のスカラ積，磁界Ha と式 (1.248)のスカラ積は各々，次のようにな
る．これより，Ebと式 (1.245)のスカラ積，およびHaと式 (1.248)のスカラ積を求めると，

Eb · (∇ × Ha) = jωEb · ¯̄ε · Ea + Eb · Ja (1.249)
Ha · (−∇ × Eb) = jωHa · ¯̄µ · Hb + Ha · Mb (1.250)

両者の和を求めると，

Eb · (∇ × Ha) − Ha · (∇ × Eb)
= jωEb · ¯̄ε · Ea + Eb · Ja + jωHa · ¯̄µ · Hb + Ha · Mb (1.251)

ベクトル公式∇ · (A × B) = B · (∇ × A) − A · (∇ × B) を用いて変形すると，

Eb · (∇ × Ha) − Ha · (∇ × Eb)
= ∇ · (Ha × Eb) = −∇ · (Eb × Ha)
= jωEb · ¯̄ε · Ea + jωHa · ¯̄µ · Hb + Eb · Ja + Ha · Mb (1.252)

同様に電界 Ea と式 (1.247)のスカラ積，磁界Hb と式 (1.246)のスカラ積を求めると，

Ea · (∇ × Hb) = jωEa · ¯̄ε · Eb + Ea · Jb (1.253)
Hb · (−∇ × Ea) = jωHb · ¯̄µ · Ha + Hb · Ma (1.254)
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両者の和を求め，ベクトル公式を用いると，

Ea · (∇ × Hb) − Hb · (∇ × Ea)
= ∇ · (Hb × Ea) = −∇ · (Ea × Hb)
= jωEa · ¯̄ε · Eb + jωHb · ¯̄µ · Ha + Ea · Jb + Hb · Ma (1.255)

ここで，¯̄ε， ¯̄µ は対称ダイアディクスであるから，次式が成り立つ*6．

Ea · ¯̄ε · Eb = Eb · ¯̄ε> · Ea = Eb · ¯̄ε · Ea (1.257)
Ha · ¯̄µ · Hb = Hb · ¯̄µ> · Ha = Hb · ¯̄µ · Ha (1.258)

ただし，¯̄ε>，¯̄µ> は，¯̄ε，¯̄µの転置を示す．式 (1.252)−式 (1.255)を求め，上式を用いると，

∇ · (Ea × Hb − Eb × Ha) = Eb · Ja + Ha · Mb − Ea · Jb − Hb · Ma (1.259)

これが，対称ダイアディクス ¯̄ε，̄̄µの媒質におけるローレンツの相反定理（Lorentz reciprocity
theorem）である．さらに，式 (1.259)を全ての電磁流源を含む領域 V にわたって体積積分
すると，

˚
V

∇ · (Ea × Hb − Eb × Ha)dV

=
˚

V

(Eb · Ja + Ha · Mb − Ea · Jb − Hb · Ma) dV (1.260)

発散定理を用いて体積積分を面積分に変換し，積分形式のローレンツの相反定理は，
‹
S

(Ea × Hb − Eb × Ha) · dS

=
˚

V

(Eb · Ja + Ha · Mb − Ea · Jb − Hb · Ma) dV (1.261)

1.12.2 モードの直交性の導出

電磁流源のない（Ja = Jb = Ma = Mb = 0）点では，ローレンツの相反定理の式 (1.259)
の右辺はゼロとなり，

∇ · (Ea × Hb − Eb × Ha) = 0 (1.262)

*6 ベクトル A とダイアディクス ¯̄a のスカラ積には次のような関係が成り立つ．

A · ¯̄a = ¯̄a> · A (1.256)

ただし，ただし，¯̄a> は，¯̄a の転置を示す．
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いま，円柱座標系 (ρ, z) において z 軸方向の伝搬定数 γn の伝送波を考えると，電磁界は因
子 e∓γnz を含み（r = ρ + zaz），

Ea(ρ, z) ≡ En ≡ ~En(ρ)e∓γnz (1.263)

Ha(ρ, z) ≡ Hn ≡ ± ~Hn(ρ)e∓γnz (1.264)

とおいて n次モード ~En(ρ)， ~Hn(ρ)を考え，また，

Eb(ρ, z) ≡ Em ≡ ~Em(ρ)e∓γmz (1.265)

Hb(ρ, z) ≡ Hm ≡ ± ~Hm(ρ)e∓γmz (1.266)

とおいてm次モード ~Em(ρ)，~Hm(ρ) を考える（n 6= m）．ただし，γn，γm は，n 次，m 次
モードの ±z 方向の伝搬定数を各々示す．これを用いて式 (1.262)を求めると，

∇ · (En × Hm − Em × Hn) = 0(
∇t + az

∂

∂z

)
·
{
~Ene∓γnz × (± ~Hme

∓γmz) − ~Eme∓γmz × (± ~Hne
∓γnz)

}
= 0

∇t · (En × Hm − Em × Hn) ∓ (γn + γm)az · (En × Hm − Em × Hn) = 0{
∇t · (~En × ~Hm − ~Em × ~Hn) − (γn + γm)az · (~En × ~Hm − ~Em × ~Hn)

}
e∓(γn+γm)z = 0

(1.267)

上式第 2項では，az とのスカラ積を求めているので，電磁界の z 成分は不要で，次式が成
り立つ．

∇t · (~En × ~Hm − ~Em × ~Hn) − (γn + γm)az · (~Et,n × ~Ht,m − ~Et,m × ~Ht,n) = 0 (1.268)

ここで，横断面内電磁界 ~Et,n, ~Et,n は，

~En(ρ) = ~Et,n + Ez,naz (1.269)
~Hn(ρ) = ~Ht,n +Hz,naz (1.270)

および ~Ht,n, ~Ht,m は，

~Em(ρ) = ~Et,m + Ez,maz (1.271)
~Hm(ρ) = ~Ht,m +Hz,maz (1.272)

導波路断面 S で面積分すると，
¨
S

∇t · (~En × ~Hm − ~Em × ~Hn)dS = (γn + γm)
¨
S

(~Et,n × ~Ht,m − ~Et,m × ~Ht,n) · azdS

(1.273)
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2次元の発散定理を用いると，
˛
C

(~En × ~Hm − ~Em × ~Hn) · ndσ = (γn + γm)
¨
S

(~Et,n × ~Ht,m − ~Et,m × ~Ht,n) · azdS

(1.274)

導波路の管壁が完全導体の場合，n × ~En = 0 および n × ~Em = 0 ゆえ，上式の周回積分は
ゼロである．また，導波路の管壁が完全導体ではないとき，管壁がインピーダンス境界とし
て ~Et = Zs(n × ~H) で表される場合，これを考慮して計算すると，同様に周回積分はゼロと
なる．よって，

(γn + γm)
¨
S

(~Et,n × ~Ht,m − ~Et,m × ~Ht,n) · azdS = 0 (1.275)

また，電磁界 Eb，Hb として，

Eb(ρ, z) ≡ Em ≡ ~Em(ρ)e±γmz (1.276)

Hb(ρ, z) ≡ Hm ≡ ∓ ~Hm(ρ)e±γmz (1.277)

を考えると，式 (1.262)は次のようになる．(
∇t + az

∂

∂z

)
·
{
~Ene∓γnz × (∓ ~Hme

±γmz) − ~Eme±γmz × (± ~Hne
∓γnz)

}
= 0 (1.278)

これより，

∇t · (En × Hm − Em × Hn) ∓ (γn − γm)az · (−En × Hm − Em × Hn) = 0
∇t · (~En × ~Hm − ~Em × ~Hn) = (γn − γm)az · (−~Et,n × ~Ht,m − ~Et,m × ~Ht,n) (1.279)

同様にして，導波路断面 S で面積分して，2次元の発散定理を用いると，
¨
S

∇t · (~En × ~Hm − ~Em × ~Hn)dS =
˛
C

(~En × ~Hm − ~Em × ~Hn) · ndσ

= (γn − γm)
¨
S

(−~Et,n × ~Ht,m − ~Et,m × ~Ht,n) · azdS (1.280)

導波管断面の管壁に沿う周回積分はゼロゆえ，

(γn − γm)
¨
S

(−~Et,n × ~Ht,m − ~Et,m × ~Ht,n) · azdS = 0 (1.281)

式 (1.275)と式 (1.281)を連立させると，次のようなモードの直交性（mode orthogonality）
を表す式が得られる．

¨
S

(
~Et,n × ~Ht,m

)
· azdS = 0 (1.282)

¨
S

(
~Et,m × ~Ht,n

)
· azdS = 0 (1.283)
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なお，積分範囲を導波管断面の一部（面 s，周回積分路 c）とする場合は，周回積分はゼロ
にならないので，

˛
c

(~En × ~Hm − ~Em × ~Hn) · ndσ

= (γn + γm)
¨
s

(~Et,n × ~Ht,m − ~Et,m × ~Ht,n) · azdS

= (γn − γm)
¨
s

(−~Et,n × ~Ht,m − ~Et,m × ~Ht,n) · azdS 6= 0 (1.284)

この場合は，次のような関係が得られる．

γn

¨
s

(~Et,n × ~Ht,m) · azdS = γm

¨
s

(~Et,m × ~Ht,n) · azdS (1.285)

1.13 モード電圧・電流によるインピーダンス行列

1.13.1 無損失な場合

先と同様に ¯̄ε> = ¯̄ε， ¯̄µ> = ¯̄µで，さらに媒質が無損失な場合（¯̄ε∗ = ¯̄ε, ¯̄µ∗ = ¯̄µ）を考え
る．電磁流源がない場合（Ja = Jb = Ma = Mb = 0），Maxwellの方程式の複素共役は，(

∇ × Hb

)∗
=
(
jω¯̄ε · Eb

)∗
(1.286)(

− ∇ × Eb

)∗
=
(
jω ¯̄µ∗ · Hb

)∗
(1.287)

ただし，( )∗ は共役複素数を示す．これを基にして次のような電磁界を考える．

∇ × Ha = jω¯̄ε · Ea (1.288)
−∇ × Ea = jω ¯̄µ · Ha (1.289)

また，

∇ × H∗
b = −jω¯̄ε∗ · E∗

b (1.290)
−∇ × E∗

b = −jω ¯̄µ∗ · H∗
b (1.291)

これより，E∗
b のスカラ積，およびHa のスカラ積は各々次のようになる．

E∗
b · (∇ × Ha) = jωE∗

b · ¯̄ε · Ea (1.292)
Ha · (−∇ × E∗

b ) = −jωHa · ¯̄µ∗ · H∗
b (1.293)

両者の和をとると，

E∗
b · (∇ × Ha) − Ha · (∇ × E∗

b ) = jωE∗
b · ¯̄ε · Ea − jωHa · ¯̄µ∗ · H∗

b (1.294)
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ベクトル公式より，

∇ · (Ha × E∗
b ) = −∇ · (E∗

b × Ha) = jωE∗
b · ¯̄ε · Ea − jωHa · ¯̄µ∗ · H∗

b (1.295)

同様にして，Ea のスカラ積，およびH∗
b のスカラ積を求めると，

Ea · (∇ × H∗
b ) = −jωEa · ¯̄ε∗ · E∗

b (1.296)
H∗

b · (−∇ × Ea) = jωH∗
b · ¯̄µ · Ha (1.297)

両者の和をとり，ベクトル公式を用いると，

Ea · (∇ × H∗
b ) − H∗

b · (∇ × Ea) = ∇ · (H∗
b × Ea) = −∇ · (Ea × H∗

b )
= −jωEa · ¯̄ε∗ · E∗

b + jωH∗
b · ¯̄µ · Ha (1.298)

式 (1.295)および式 (1.298)より，

− ∇ · (E∗
b × Ha) − ∇ · (Ea × H∗

b )
= jωE∗

b · ¯̄ε · Ea − jωHa · ¯̄µ∗ · H∗
b − jωEa · ¯̄ε∗ · E∗

b + jωH∗
b · ¯̄µ · Ha (1.299)

ここで，¯̄ε∗> = ¯̄ε， ¯̄µ∗> = ¯̄µ ゆえ，

Ea · ¯̄ε∗ · E∗
b = E∗

b · ¯̄ε∗> · Ea = E∗
b · ¯̄ε · Ea (1.300)

Ha · ¯̄µ · H∗
b = H∗

b · ¯̄µ∗> · Ha = H∗
b · ¯̄µ · Ha (1.301)

これより，次式が得られる．

∇ · (Ea × H∗
b + E∗

b × Ha) = 0 (1.302)

また，積分形式では，
‹
S

(Ea × H∗
b + E∗

b × Ha) · dS = 0 (1.303)

これらの式は，¯̄ε> = ¯̄ε = ¯̄ε∗, ¯̄µ> = ¯̄µ = ¯̄µ∗ の媒質において電磁流源がない場合にローレン
ツの相反定理を応用した例である．
同様にして，円柱座標系 (ρ, z) において次のような電磁界の複素共役を考える．

E∗
b (ρ, z) ≡ E∗

m ≡ ~E∗
m(ρ)e∓γ∗

mz (1.304)

H∗
b (ρ, z) ≡ H∗

m ≡ ± ~H∗
m(ρ)e∓γ∗

mz (1.305)

ここで，

~E∗
m(ρ) = ~E∗

t,m + E∗
z,maz (1.306)

~H∗
m(ρ) = ~H∗

T,m +H∗
z,maz (1.307)
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これより，式 (1.302)は（導出省略），

(γn + γ∗
m)
¨
S

(~Et,n × ~H∗
t,m + ~E∗

t,m × ~Ht,n) · azdS = 0 (1.308)

あるいは，次のような電磁界の複素共役を考えると，

E∗
b (ρ, z) ≡ E∗

m ≡ ~E∗
m(ρ)e±γ∗

mz (1.309)

H∗
b (ρ, z) ≡ H∗

m ≡ ∓ ~H∗
m(ρ)e±γ∗

mz (1.310)

式 (1.302)は次のようになる（導出省略）．

(γn − γ∗
m)
¨
S

(−~Et,n × ~H∗
t,m + ~E∗

t,m × ~Ht,n) · azdS = 0 (1.311)

これらを連立させると，m次モードを複素共役とする直交性（orthogonality）が得られる．
¨
S

(
~Et,n × ~H∗

t,m

)
· azdS = 0 (1.312)

¨
S

(
~E∗
t,m × ~Ht,n

)
· azdS = 0 (1.313)

1.13.2 相反回路

対称ダイアディクス ¯̄ε， ¯̄µの媒質において，面 S に囲まれた領域 V に電磁流源がない場
合，積分形式のローレンツの相反定理（Lorentz reciprocity theorem）は次のようになる．

‹
S

(Ea × Hb − Eb × Ha) · dS = 0 (1.314)

いま，単一モードの多端子対回路網を考え，異なる 2つの励振条件において，端子面の横断
面内電磁界を次にように定義する．

Ea

∣∣∣∣
Si

≡ V̌ (i)
a
~E (i)
t (1.315)

Ha

∣∣∣∣
Si

≡ Ǐ(i)
a
~H(i)
t (1.316)

Eb

∣∣∣∣
Si

≡ V̌
(i)
b
~E (i)
t (1.317)

Hb

∣∣∣∣
Si

≡ Ǐ
(i)
b
~H(i)
t (1.318)

ただし，Si は端子 #iにおける断面を示す．これより，式 (1.314)は，

∑
i

¨
Si

(
V̌ (i)
a
~E (i)
t × Ǐ

(i)
b
~H(i)
t − V̌

(i)
b
~E (i)
t × Ǐ(i)

a
~H(i)
t

)
· dS = 0 (1.319)
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整理して，

∑
i

(V̌ (i)
a Ǐ

(i)
b − V̌

(i)
b Ǐ(i)

a )
¨
Si

(~E (i)
t × ~H(i)

t ) · dS = 0 (1.320)

ここで，次の列ベクトル

V̌ a ≡


V̌ (1)
a

V̌ (2)
a
...

 , Ǐb ≡


Ǐ

(1)
b

Ǐ
(2)
b...

 , V̌ b ≡


V̌

(1)
b

V̌
(2)
b...

 , Ǐa ≡


Ǐ(1)
a

Ǐ(2)
a
...

 (1.321)

および対角行列

[
Q
]

≡


Q(1) 0 · · ·

0 Q(2) · · ·
... ... . . .

 , Q(i) ≡
ˆ
Si

(~E (i)
t × ~H(i)

t ) · dS (1.322)

を定義して，式 (1.320)を表すと（V̌ a
T，ǏaT は，V̌ a，Ǐa の転置），

V̌ a
T

[
Q
]
Ǐb − ǏaT

[
Q
]
V̌ b = 0 (1.323)

このとき，インピーダンス行列
[
Ž
]
（行列要素は Žij）が V̌ =

[
Ž
]
Ǐ で定義されているとき，

V̌ a =
[
Ž
]
Ǐa (1.324)

V̌ a
T =

([
Ž
]
Ǐa
)
T

= ǏaT
[
Ž
]
T

(1.325)

V̌ b =
[
Ž
]
Ǐb (1.326)

ただし，
[
Ž
]
T
は
[
Ž
]
の転置を示す. これより，式 (1.323)を変形して，

ǏaT
[
Ž
]
T

[
Q
]
Ǐb − ǏaT

[
Q
][

Ž
]
Ǐb = 0

ǏaT

([
Ž
]
T

[
Q
]

−
[
Q
][

Ž
])

Ǐb = 0 (1.327)

ǏaT 6= 0，Ǐb 6= 0ゆえ，[
Ž
]
T

[
Q
]

−
[
Q
][

Ž
]

= 0 (1.328)

ここで，対角行列を次にようにおく．

[√
Q
]

=


√
Q(1) 0 · · ·
0

√
Q(2) · · ·

... ... . . .

 (1.329)
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また，

[√
Q
]−1

=


1/
√
Q(1) 0 · · ·
0 1/

√
Q(2) · · ·

... ... . . .

 (1.330)

これより，[√
Q
]−1 {[

Ž
]
T

[
Q
]

−
[
Q
][

Ž
]} [√

Q
]−1

= 0[√
Q
]−1[

Ž
]
T

[√
Q
]

−
[√
Q
][

Ž
][√

Q
]−1

= 0([√
Q
][

Ž
][√

Q
]−1

)
T

=
[√
Q
][

Ž
][√

Q
]−1

(1.331)

よって，対称な行列
[
Z
]
が次のように定義できる．

[
Z
]

≡
[√
Q
][

Ž
][√

Q
]−1

=
[
Z
]
T

(1.332)

逆は，[
Ž
]

=
[√
Q
]−1[

Z
][√

Q
]

(1.333)

これを用いるとインピーダンス行列に関する式は，

V̌ =
[
Ž
]
Ǐ =

[√
Q
]−1[

Z
][√

Q
]
Ǐ[√

Q
]
V̌ =

[
Z
][√

Q
]
Ǐ (1.334)

そこで，対称行列で表されるインピーダンス行列
[
Z
]
より，

V ≡
[√
Q
]
V̌ (1.335)

I ≡
[√
Q
]
Ǐ (1.336)

を定義する．よって，

V =
[
Z
]
I (1.337)[

Z
]
T

=
[
Z
]

(1.338)

ここで，

V =


V (1)

V (2)

...

 , [
Z
]

=


Z11 Z12 · · ·
Z21 Z22 · · ·

... ... . . .

 , I =


I(1)

I(2)

...

 (1.339)
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これより，式 (1.323)は次のようになる．

V a
T Ib − IaT V b = 0 (1.340)

もう一度，対称行列となることを確認すると，V =
[
Z
]
I より，

([
Z
]
Ia
)
T

Ib − IaT
([

Z
]
Ib
)

= IaT

([
Z
]
T

−
[
Z
])

Ib = 0 (1.341)

よって，[
Z
]
T

=
[
Z
]

(1.342)

1.14 電磁界の境界条件

1.14.1 磁界の境界条件（面電流がある場合）

異なる媒質 (1)，(2)が接する境界面 S のまわりに，方形ループ（境界面に平行な辺の長
さを ∆l，垂直な辺の長さを h）からなる積分路 C0 を考える（ループの面 S0(= h · ∆l)と
境界面 S は直交している）．アンペアーマクスウェルの法則（Ampere-Maxwell’s law）は，
ストークスの定理（Stokes’ theorem）を用いると，˛

C0

H · ds =
¨
S0

∂D

∂t
· n0dS0 +

¨
S0

J · n0dS0 (1.343)

ただし，ds は C0 に沿うベクトル線要素，dS0 は方形ループ面上の面要素，n0 は S0 に垂
直な正方向の法線単位ベクトルを示す．
積分路 C0を境界面に限りなく近付け h → 0，∆lを十分小さくすると（微小方形ループ），
上式右辺の第 1項はゼロとなる．したがって，(

H(1) − H(2)
)

· τdl = lim
h→0

hJ · n0 dl = Js · n0 dl (1.344)

ただし，Js は境界面上の電流を示し， lim
h→0

hJ = Js

また，H(1)，H(2) は媒質 (1)，(2)の境界面での磁界を各々示す．
そして，τ は dlに沿う単位ベクトルを示し，

τ = n0 × n． (1.345)

ただし，nは境界面 S の法線単位ベクトルを示す（媒質 (2)から (1)を見た方向が正）．こ
れより，(

H(1) − H(2)
)

· (n0 × n) = n0 ·
[
n ×

(
H(1) − H(2)

)]
= Js · n0

よって，磁界の境界条件は次のようになる．

n ×
(
H(1) − H(2)

)
= Js (1.346)
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1.14.2 電界の境界条件（面磁流がある場合）

一方，ファラデーの電磁誘導の法則（Faraday’s law of induction）

−
˛
C0

E · ds =
¨
S0

∂B

∂t
· n0dS0 (1.347)

を用いて同様に求めると電界の境界条件が得られ，次のようになる．(
E(1) − E(2)

)
× n = 0 (1.348)

これより，完全電気導体（perfect electric conductor）上の電磁界の境界条件は

n × H = Js, n × E = 0 (at a perfect electric conductor) (1.349)

ただし，nは導体から見た方向を正とする法線ベクトルである．
完全電気導体に双対的な完全磁気導体（perfect magnetic conductor）を仮想的に考え
ると，

n × H = 0 (at a perfect magnetic conductor) (1.350)

ファラデーの電磁誘導の法則に等価的な磁流M を考慮して，

−
˛
C0

E · ds =
¨
S0

∂B

∂t
· n0dS0 + M (1.351)

これより，電界の境界条件は，(
E(1) − E(2)

)
× n = Ms (1.352)

ただし，Ms は境界面上の磁流を示し，

lim
h→0

hM = Ms (1.353)

1.15 影像法

1.15.1 完全電気導体

電磁流素子と無限に大きい完全電気導体（perfect electric conductor）がある場合，影像
法（Image theory）より導体を取り除いて鏡像の位置に影像素子をおき，導体面上の全電界
の接線成分が E

∣∣∣
tan

= 0となるように影像素子の振幅を決定すればよい．
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図 1.10. 完全電気導体と微小電流・磁流素子

完全電気導体による影像素子は図のようになり，完全電気導体を取り除いた 2素子アレー
となる．

図 1.11. 完全電気導体による影像素子

微小電流素子による電界，磁界
電流を原点におき，電流の向きを z 軸方向とする微小電流素子（電気ダイポール）によっ
て生じる観測点 (r, θ, φ)における電界 Ee，磁界He は，

Ee(r, θ, φ) = I∆z
2π jωµ

(
1
jkr

+ 1
(jkr)2

)
e−jkr

r
cos θar

+ I∆z
4π jωµ

(
1 + 1

jkr
+ 1

(jkr)2

)
e−jkr

r
sin θ aθ

≡ fe(r) cos θar + ee(r) sin θaθ (1.354)

He(r, θ, φ) = I∆z
4π jk

(
1 + 1

jkr

)
e−jkr

r
sin θ aφ

≡ he(r) sin θaφ (1.355)

44



ただし，ar，aθ，aφは，r，θ，φ方向に沿う単位ベクトルを示す．観測点を円柱座標 (ρ, φ, z)
として表すこともでき，単位ベクトルの関係は次のようになる．

aρ = cosφax + sinφay

ar = sin θ
(

cosφax + sinφay
)

+ cos θaz = sin θaρ + cos θaz
aθ = cos θ

(
cosφax + sinφay

)
− sin θaz = cos θaρ − sin θaz

aφ = − sinφax + cosφay

ただし，aρ は ρ方向に沿う単位ベクトルを示す．これより，Ee を円筒座標系の単位ベクト
ルを用いて表すと，

Ee = fe(r) cos θ(sin θaρ + cos θaz) + ee(r) sin θ(cos θaρ − sin θaz)
= (fe(r) + ee(r)) sin θ cos θaρ + (fe(r) cos2 θ − ee(r) sin2 θ)az
= Eρ(r, θ)aρ + Ez(r, θ)az (1.356)

地導体に垂直な微小磁流素子
微小磁流素子の場合は，双対性より電界 Em は，

Em(r, θ, φ) = −em(r) sin θaφ (1.357)

導体板が磁流素子と垂直であるから，導体面上では θ′ = π − θゆえ，

sin θ′ = sin(π − θ) = sin θ (1.358)

影像磁流素子による電界の接線成分 E′
m1

∣∣∣
tan
は，r′ = rより，

E′
m1

∣∣∣
tan

= −em(r′) sin θ′aφ = −em(r) sin θaφ = Em1
∣∣∣
tan

(1.359)

影像素子の振幅を K ′ とすると，導体面上の電界の境界条件より，

KEm1
∣∣∣
tan

+K ′E′
m1

∣∣∣
tan

= 0 (1.360)

KEm1
∣∣∣
tan

+K ′Em1
∣∣∣
tan

= (K +K ′)Em1
∣∣∣
tan

= 0 (1.361)
∴ K ′ = −K (1.362)

地導体に平行な微小電流素子
導体板が ρ = dにおいて，aR(= cos Φax+sin Φay)に直交する場合，接線電界Ee2

∣∣∣
tan
は，

Ee2
∣∣∣
tan

= Eρ(r, θ)(aρ · aΦ)aΦ + Ez(r, θ)az (1.363)
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ここで，

aρ · aΦ = (cosφax + sinφay) · (− sin Φax + cos Φay)
= − cosφ sin Φ + sinφ cos Φ = sin(φ− Φ) (1.364)

円筒座標 (ρ, φ, z) において，影像素子は点 (ρ = 2d, φ = Φ, z = 0) におき，電流の向きは
+z 方向とする．影像素子の位置を原点とする円柱座標 (ρ′′, φ′′, z)，球座標 (r′′, θ′′, φ′′)を考
えると，導体面上では φ′′ − Φ = π − (φ− Φ)ゆえ，

sin(φ′′ − Φ) = sin(π − (φ− Φ)) = sin(φ− Φ) (1.365)

影像素子による接線電界 E′
e2

∣∣∣
tan
は，ρ′′ = ρ，r′′ = r，θ′′ = θより，E′

ρ(r′′, θ′′) = Eρ(r, θ)，
E′
z(r′′, θ′′) = Ez(r, θ)ゆえ，

E′
e2

∣∣∣
tan

= Eρ(r′′, θ′′) sin(φ′′ − Φ)aΦ + Ez(r′′, θ′′)az
= Eρ(r, θ) sin(φ− Φ)aΦ + Ez(r, θ)az = Ee2

∣∣∣
tan

(1.366)

影像素子の振幅を I ′′ とすると，導体面上における電界の境界条件より，

IEe2
∣∣∣
tan

+ I ′′E′
e2

∣∣∣
tan

= 0 (1.367)

よって，

IEe2
∣∣∣
tan

+ I ′′Ee2
∣∣∣
tan

= (I + I ′′)Ee2
∣∣∣
tan

= 0
I + I ′′ = 0
∴ I ′′ = −I (1.368)

1.15.2 完全磁気導体

同様にして，完全磁気導体（perfect magnetic conductor）*7 がある場合も，影像法を適
用でき，導体上の全磁界の接線成分がH

∣∣∣
tan

= 0となるように影像素子を決めればよい．

図 1.12. 完全磁気導体と微小電流・磁流素子

*7 完全電気導体の境界条件 n × E = 0 に双対的な n × H = 0 が成り立つ仮想的な境界面
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影像素子は図のようになり，2素子アレーとなる．

図 1.13. 完全磁気導体による影像素子

微小磁流素子による電界，磁界
微小磁流（振幅 K）による電界 Em および磁界 Hm は，双対性より（Ee → Hm，

He → −Em，I → K），

−Em = K∆z
4π jk

(
1 + 1

jkr

)
e−jkr

r
sin θ aφ ≡ em(r) sin θaφ (1.369)

Hm = K∆z
2π jωµ

(
1
jkr

+ 1
(jkr)2

)
e−jkr

r
cos θar

+ K∆z
4π jωµ

(
1 + 1

jkr
+ 1

(jkr)2

)
e−jkr

r
sin θ aθ

≡ fm(r) cos θar + hm(r) sin θaθ
= (fm(r) + hm(r)) sin θ cos θaρ + (fm(r) cos2 θ − hm(r) sin2 θ)az
= Hρ(r, θ)aρ +Hz(r, θ)az (1.370)

地導体に垂直な微小電流素子
導体板が z = −dの x− y 面にある場合，接線電界 Ee1

∣∣∣
tan
は，

Ee1
∣∣∣
tan

= Eρ(r, θ)aρ = (fe(r) + ee(r)) sin θ cos θaρ (1.371)

影像素子は点 (x = 0, y = 0, z = −2d)におき，電流の向きは +z 方向とする．影像素子の
位置を原点とする円柱座標 (ρ, φ, z′)，球座標 (r′, θ′, φ)を考えると z′ = z + 2d．導体面上で
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は θ′ = π − θゆえ，

sin θ′ = sin(π − θ) = − sin(−θ) = sin θ (1.372)
cos θ′ = cos(π − θ) = − cos(−θ) = − cos θ (1.373)

影像素子による導体面上の接線電界 E′
e1

∣∣∣
tan
は，r′ = rより，

E′
e1

∣∣∣
tan

= (fe(r′) + ee(r′)) sin θ′ cos θ′aρ

= (fe(r) + ee(r)) sin θ(− cos θ)aρ = −Ee1
∣∣∣
tan

(1.374)

影像素子の励振係数を I ′ とすると，導体面上における電界の境界条件より，

IEe1
∣∣∣
tan

+ I ′E′
e1

∣∣∣
tan

= 0 (1.375)

よって，

IEe1
∣∣∣
tan

+ I ′(−Ee1
∣∣∣
tan

) = (I − I ′)Ee1
∣∣∣
tan

= 0
I − I ′ = 0
∴ I ′ = I (1.376)

影像素子の振幅 I ′ は，電流素子の振幅 I と等しい値となる．

地導体に平行な微小磁流素子
導体板に平行な磁流素子による接線電界 Em2

∣∣∣
tan
は，

Em2
∣∣∣
tan

= −em(r) sin θ(aφ · aΦ)aΦ (1.377)

ここで，

aφ · aΦ = (− sinφax + cosφay) · (− sin Φax + cos Φay)
= sinφ sin Φ + cosφ cos Φ = cos(φ− Φ) (1.378)

導体面上では φ′′ − Φ = π − (φ− Φ)ゆえ，

cos(φ′′ − Φ) = cos(π − (φ− Φ)) = − cos(φ− Φ) (1.379)

よって，影像素子による接線電界 E′
m2

∣∣∣
tan
は，

E′
m2

∣∣∣
tan

= −em(r′′) sin θ′′ cos(φ′′ − Φ)aΦ

= em(r) sin θ cos(φ− Φ)aΦ = −Em2
∣∣∣
tan

(1.380)

影像素子の振幅を K ′ とすると，導体面上での電界の境界条件より，

KEm2
∣∣∣
tan

+K ′′E′
m2

∣∣∣
tan

= 0 (1.381)

KEm2
∣∣∣
tan

+K ′′(−Em2
∣∣∣
tan

) = (K −K ′′)Em2
∣∣∣
tan

= 0 (1.382)
∴ K ′′ = K (1.383)
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1.16 平面波の反射・透過

1.16.1 平面波の表示

異なる媒質の境界面に平面波が入射すると，反射・透過が生じる．いま，単位ベクトル ar

に沿う方向に伝搬する平面波を考えると，電界 E+ および磁界H+ は，

E+ = A+e−jkar·r, H+ = Yw(ar × E+) (1.384)

ただし，r は位置ベクトル，k は波数，Yw は波動アドミタンスを示し，無損失な場合，

k2 = ω2µε, Yw = 1
Zw

= k

ωµ
(1.385)

図 1.14. 座標系および単位ベクトルの定義

境界面の法線方向を z 軸方向にとると，平面波の反射方向 âr は反射の法則より，

âr = (ar · ax)ax + (ar · ay)ay − (ar · az)az = ar − 2(ar · az)az (1.386)

この反射波の電界 E− および磁界H− は，

E− = A−e−jkâr·r, H− = Yw(âr × E−) (1.387)

平面波 E± は，入射面に垂直な電界 E±
⊥ と平行な電界 E±

‖ の重ね合わせで表すことができ，

E± = E±
⊥ + E±

‖ (1.388)
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いま，入射面が xz 面内となるよう座標系を定義すると，電界は ay 方向成分と，これに
直交する成分で表され，

E+ = A+e−jkar·r, A+ = A+
⊥ay + A+

‖ (ay × ar) (1.389)

E− = A−e−jkâr·r, A− = A−
⊥ay + A−

‖ (âr × ay) (1.390)

(a) 垂直偏波（TE 波） (b) 平行偏波（TM 波）

図 1.15. 入射面と電界，磁界の方向

ここで，

ar = − sin θax + cos θaz, âr = − sin θax − cos θaz (1.391)

より，

−kar · r = −k(− sin θax + cos θaz) · (xax + yay + zaz)
= k(x sin θ − z cos θ) (1.392)

−kâr · r = −k(− sin θax − cos θaz) · (xax + yay + zaz)
= k(x sin θ + z cos θ) (1.393)

よって，電界 E+，E− は，

E+ = A+e−jkar·r =
{
A+

⊥ay + A+
‖ (ay × ar)

}
ejk(x sin θ−z cos θ) (1.394)

E− = A−e−jkâr·r =
{
A−

⊥ay + A−
‖ (âr × ay)

}
ejk(x sin θ+z cos θ) (1.395)

また，磁界についても重ね合わせで，

H± = H±
⊥ + H±

‖ (1.396)

ここで，磁界H+，H− は，

H+ = Yw

[
ar ×

{
A+

⊥ay + A+
‖ (ay × ar)

}]
ejk(x sin θ−z cos θ)

= Yw
{
A+

⊥(ar × ay) + A+
‖ ay

}
ejk(x sin θ−z cos θ) (1.397)

H− = Yw

[
âr ×

{
A−

⊥ay + A−
‖ (âr × ay)

}]
ejk(x sin θ+z cos θ)

= Yw
{
A−

⊥(âr × ay) − A−
‖ ay

}
ejk(x sin θ+z cos θ) (1.398)
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入射面に電界が垂直な場合，電界の z 方向成分がないので TE波，一方，入射面に電界が平
行な場合，磁界の z 方向成分がないので TM波である．ここで，

(ay × ar) · ax = (ax × ay) · ar = az · ar = cos θ (1.399)
(âr × ay) · ax = (ay × ax) · âr = −az · âr = cos θ (1.400)

より，xy 面の接線電磁界は（添え字 tは接線成分を示す），

E+
t =

(
A+

⊥ay + A+
‖ cos θax

)
ejk(x sin θ−z cos θ) (1.401)

E−
t =

(
A−

⊥ay + A−
‖ cos θax

)
ejk(x sin θ+z cos θ) (1.402)

H+
t = Yw

(
− A+

⊥ cos θax + A+
‖ ay

)
ejk(x sin θ−z cos θ) (1.403)

H−
t = Yw

(
A−

⊥ cos θax − A−
‖ ay

)
ejk(x sin θ+z cos θ) (1.404)

となり，反射波と透過波を扱うためには，このような 2つの平面波の重ね合わせによって電
磁界を表せばよい．
まず，電界について，

Et = E+
t + E−

t

=
(
A+

⊥ay + A+
‖ cos θax

)
ejk(x sin θ−z cos θ) +

(
A−

⊥ay + A−
‖ cos θax

)
ejk(x sin θ+z cos θ)

≡
(
V⊥(z)ay + V‖(z)ax

)
ejkx sin θ (1.405)

ここで，

V⊥(z) = A+
⊥e

−jkz cos θ + A−
⊥e

jkz cos θ ≡ V +
⊥ e

−jkzz + V −
⊥ e

jkzz (1.406)

V‖(z) = cos θ
(
A+

‖ e
−jkz cos θ + A−

‖ e
jkz cos θ

)
≡ V +

‖ e
−jkzz + V −

‖ e
jkzz (1.407)

ただし，

V ±
⊥ ≡ A±

⊥, V ±
‖ ≡ cos θA±

‖ , kz ≡ k cos θ (1.408)

同様にして，磁界について，

Ht = H+
t + H−

t

= Yw
(

− A+
⊥ cos θax + A+

‖ ay
)
ejk(x sin θ−z cos θ)

+ Yw
(
A−

⊥ cos θax − A−
‖ ay

)
ejk(x sin θ+z cos θ)

≡
(

− I⊥(z)ax + I‖(z)ay
)
ejkx sin θ (1.409)

ここで，

I⊥(z) = Yw cos θ
(
A+

⊥e
−jkz cos θ − A−

⊥e
jkz cos θ

)
≡ Y⊥

(
V +

⊥ e
−jkzz − V −

⊥ e
jkzz

)
(1.410)

I‖(z) = Yw
(
A+

‖ e
−jkz cos θ − A−

‖ e
jkz cos θ

)
≡ Y‖

(
V +

‖ e
−jkzz − V −

‖ e
jkzz

)
(1.411)
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ただし，

Y⊥ ≡ Yw cos θ, Y‖ ≡ Yw
cos θ , kz ≡ k cos θ (1.412)

1.16.2 境界面での反射・透過

媒質の境界面（z = 0）における接線電磁界の連続条件より，(
V⊥,1(0)ay + V‖,1(0)ax

)
ejk1x sin θ1 =

(
V⊥,2(0)ay + V‖,2(0)ax

)
ejk2x sin θ2 (1.413)(

− I⊥,1(0)ax + I‖,1(0)ay
)
ejk1x sin θ1 =

(
− I⊥,2(0)ax + I‖,2(0)ay

)
ejk2x sin θ2 (1.414)

任意の xに対して成り立つ条件は，

k1 sin θ1 = k2 sin θ2 (1.415)

これはスネルの法則（Snell’s law）である．よって，各成分について（添字 1，2は領域を
示す），

V⊥,1(0) = V⊥,2(0), I⊥,1(0) = I⊥,2(0)
V‖,1(0) = V‖,2(0), I‖,1(0) = I‖,2(0) (1.416)

上式は同じ形の 2組の式であるため，添え字 ⊥，‖を省略した次式を解けばよい．

V1(0) = V2(0), I1(0) = I2(0) (1.417)

したがって，

V +
1 + V −

1 = V +
2 + V −

2 (1.418)
Y1(V +

1 − V −
1 ) = Y2(V +

2 − V −
2 ) (1.419)

領域 (1)から平面波が入射したときの反射および透過を考えると，V −
2 = 0として，

V +
1 + V −

1 = V +
2 (1.420)

Y1(V +
1 − V −

1 ) = Y2V
+

2 (1.421)

これより，V +
2 ，あるいは V −

1 を消去すると，

V −
1
V +

1

∣∣∣∣∣
V −

2 =0
= Y1 − Y2

Y1 + Y2
,

V +
2
V +

1

∣∣∣∣∣
V −

2 =0
= 2Y1

Y1 + Y2
(1.422)

したがって，TE波の反射係数 R⊥ は，

R⊥ =
A−

⊥,1

A+
⊥,1

∣∣∣∣∣
A−

⊥,2=0
=
V −

⊥,1

V +
⊥,1

∣∣∣∣∣
V −

⊥,2=0
= Y⊥,1 − Y⊥,2

Y⊥,1 + Y⊥,2

= Yw1 cos θ1 − Yw2 cos θ2

Yw1 cos θ1 + Yw2 cos θ2
(1.423)
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また，TE波の透過係数 T⊥ は，

T⊥ =
A+

⊥,2

A+
⊥,1

∣∣∣∣∣
A−

⊥,2=0
=
V +

⊥,2

V +
⊥,1

∣∣∣∣∣
V −

⊥,2=0
= 2Y⊥,1

Y⊥,1 + Y⊥,2

= 2Yw1 cos θ1

Yw1 cos θ1 + Yw2 cos θ2
(1.424)

同様にして，TM波の反射係数 R‖ は，

R‖ =
A−

‖,1

A+
‖,1

∣∣∣∣∣∣
A−

‖,2=0

=
V −

‖,1 cos θ1

V +
‖,1 cos θ1

∣∣∣∣∣∣
V −

‖,2=0

=
Y‖,1 − Y‖,2

Y‖,1 + Y‖,2
=

Yw1
cos θ1

− Yw2
cos θ2

Yw1
cos θ1

+ Yw2
cos θ2

= Yw1 cos θ2 − Yw2 cos θ1

Yw1 cos θ2 + Yw2 cos θ1
(1.425)

また，TM波の透過係数 T‖ は，

T‖ =
A+

‖,2

A+
‖,1

∣∣∣∣∣∣
A−

‖,2=0

=
V +

‖,2
cos θ2

V +
‖,1

cos θ1

∣∣∣∣∣∣∣
V −

‖,2=0

=
2Y‖,1

Y‖,1 + Y‖,2

cos θ1

cos θ2
=

2 Yw1
cos θ1

Yw1
cos θ1

+ Yw2
cos θ2

cos θ1

cos θ2

= 2Yw1 cos θ1

Yw1 cos θ2 + Yw2 cos θ1
(1.426)

1.16.3 相対屈折率

相対屈折率 n ≡ k2/k1 を定義すると，

Yw2 = k2

ωµ2
= n

µ1

µ2
Yw1 (1.427)

これより，各係数は次のようになる．

R⊥ = µ2 cos θ1 − nµ1 cos θ2

µ2 cos θ1 + nµ1 cos θ2
, T⊥ = 2µ2 cos θ1

µ2 cos θ1 + nµ1 cos θ2
(1.428)

R‖ = −nµ1 cos θ1 − µ2 cos θ2

nµ1 cos θ1 + µ2 cos θ2
, T‖ = 2µ2 cos θ1

nµ1 cos θ1 + µ2 cos θ2
(1.429)

ここで，スネルの法則より，

cos θ2 =
√

1 − sin2 θ2 =

√√√√1 −
(

sin θ1

n

)2

= 1
n

√
n2 − sin2 θ1 (1.430)
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1.16.4 入射角を考慮した実効比誘電率

　 R⊥，R‖ を変形して，

R⊥ =
1 −

√
n2−sin2 θ1

cos2 θ1

1 +
√
n2−sin2 θ1

cos2 θ1

, R‖ = −

√
n4 cos2 θ1
n2−sin2 θ1

− 1√
n4 cos2 θ1
n2−sin2 θ1

+ 1
(1.431)

いま，

α⊥(θ1) ≡ n2 − sin2 θ1

cos2 θ1
= n2 − sin2 θ1

1 − sin2 θ1
(1.432)

α‖(θ1) ≡ n4 cos2 θ1

n2 − sin2 θ1
= n4(1 − sin2 θ1)

n2 − sin2 θ1
(1.433)

とおくと，反射係数 R⊥，R‖，透過係数 T⊥，T‖ は，

R⊥ =
1 −

√
α⊥(θ1)

1 +
√
α⊥(θ1)

, T⊥ = 2
1 +

√
α⊥(θ1)

(1.434)

また，

R‖ =
1 −

√
α‖(θ1)

1 +
√
α‖(θ1)

, T‖ = 2
1 +

√
α‖(θ1)

√
α‖(θ1)
n

(1.435)

ここで，α⊥(θ1)，α‖(θ1)を実効比誘電率（effective relative permittivity）という．
垂直入射のとき（θ1 = 0），

α⊥(0) = n2 − sin2 0
cos2 0 = n2 (1.436)

α‖(0) = n4 cos2 0
n2 − sin2 0 = n2 (1.437)

ここで，n2 = k2
2/k

2
1 = ε2/ε1．このとき，反射係数 R⊥，R‖ は，

R⊥

∣∣∣∣
θ1=0

= 1 − n

1 + n
, R‖

∣∣∣∣
θ1=0

= −n− 1
n+ 1 = R⊥

∣∣∣∣
θ1=0

(1.438)

1.16.5 単層誘電体板における反射・透過

図のように領域 (2)を誘電体板，領域 (1)を自由空間，領域 (3)を誘電体媒質として，媒
質 (1)から (2)，(3)に平面波が入射したときの反射，透過を求める．
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図 1.16. 単層誘電体板

領域 (1)と (2)の境界面（z = 0）での接線電磁界の連続条件より得られる式は，先に求
めた境界面での反射・透過と同様に，

V1(0) = V2(0), (1.439)
I1(0) = I2(0) (1.440)

より，

V +
1 + V −

1 = V +
2 + V −

2 , (1.441)
Y1(V +

1 − V −
1 ) = Y2(V +

2 − V −
2 ) (1.442)

これより，V +
2 ，あるいは V −

2 を消去すると，

V −
2 = Y1 + Y2

2Y2

(
−Y1 − Y2

Y1 + Y2
V +

1 + V −
1

)
= Y1 + Y2

2Y2

(
−R11V

+
1 + V −

1

)
V +

2 = Y1 + Y2

2Y2

(
V +

1 − Y1 − Y2

Y1 + Y2
V −

1

)
= Y1 + Y2

2Y2

(
V +

1 −R11V
−

1

)
ここで，

R11 ≡ Y1 − Y2

Y1 + Y2
(1.443)

一方，領域 (2)と (3)の境界面（z = d）での接線電磁界の連続条件より，

V2(d) = V3(0), (1.444)
I2(d) = I3(0) (1.445)

ゆえ，

V +
2 e

−jkz2d + V −
2 e

jkz2d = V +
3 + V −

3 (1.446)

Y2
(
V +

2 e
−jkz2d − V −

2 e
jkz2d

)
= Y3(V +

3 − V −
3 ) (1.447)
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いま，V −
3 = 0とおき（領域 (3)からの入射波がない），V +

3 を消去すると，

−(Y3 − Y2)V +
2 e

−jkz2d = (Y3 + Y2)V −
2 e

jkz2d

−R33V
+

2 e
−j2kz2d = V −

2 (1.448)

先に求めた V +
2 ，V −

2 を代入すると，

−R33
(
V +

1 −R11V
−

1

)
e−j2kz2d = −R11V

+
1 + V −

1 (1.449)

これより，反射係数 Rは，

R = V −
1
V +

1

∣∣∣∣∣
V −

3 =0
= R11 −R33e

−j2kz2d

1 −R11R33e−j2kz2d
(1.450)

ここで，

R11 = Y1 − Y2

Y1 + Y2
, R33 = Y3 − Y2

Y3 + Y2
, (1.451)

kz2 = k2 cos θ2 (1.452)

ただし，R11 は，先に示した領域 (1)と (2)の境界面に領域 (1)から平面波が入射したとき
の TE波（垂直偏波 ⊥），TM波（平行偏波 ‖）の反射係数を示す．同様にして，透過係数
T は（導出省略），

T = V +
3
V +

1

∣∣∣∣∣
V −

3 =0
= (1 −R11)(1 −R33)

1 −R11R33e−j2kz2d
e−jkz2d (1.453)

1.16.6 多層誘電体板における反射・透過

(1) (2) 

k1 

d2 

(3) (N) (N+1) (N+2) 

k2 k3 kN kN+1 kN+2 

d3 dN dN+1 

A1
-

A1
+

AN+2
-

AN+2
+

図 1.17. 多層誘電体板（N 層の場合）
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領域 (i)と (i+1)の境界面（z = di）での接線電磁界の連続条件より，

V +
i e

−jkzidi + V −
i e

jkzidi = V +
i+1 + V −

i+1 (1.454)

Yi
(
V +
i e

−jkzidi − V −
i e

jkzidi

)
= Yi+1(V +

i+1 − V −
i+1) (1.455)

ただし，

kzi = ki cos θi (1.456)

まず，V −
i を消去すると，

V +
i = ejkzidi

2

{
V +
i+1

(
1 + Yi+1

Yi

)
+ V −

i+1

(
1 − Yi+1

Yi

)}
(1.457)

また，V +
i を消去すると，

V −
i = e−jkzidi

2

{
V +
i+1

(
1 − Yi+1

Yi

)
+ V −

i+1

(
1 + Yi+1

Yi

)}
(1.458)

まず，垂直偏波については，先に定義した

V ±
⊥ = A±

⊥, Y⊥ = Yw cos θ (1.459)

より，

Y⊥,i+1

Y⊥,i
= Yw,i+1 cos θi+1

Yw,1 cos θi
≡ W⊥,i (1.460)

よって，

A+
⊥,i = ejkzidi

2
{
A+

⊥,i+1 (1 +W⊥,i) + A−
⊥,i+1 (1 −W⊥,i)

}
(1.461)

A−
⊥,i = e−jkzidi

2
{
A+

⊥,i+1 (1 −W⊥,i) + A−
⊥,i+1 (1 +W⊥,i)

}
(1.462)

次に，平行偏波についても同様にして，先に定義した

V ±
‖ = A±

‖ cos θ, Y‖ = Yw
cos θ (1.463)

より，

Y‖,i+1

Y‖,i
= Yw,i+1 cos θi
Yw,1 cos θi+1

≡ W‖,i (1.464)

これより，

A+
‖,i cos θi = ejkzidi

2

{
A+

‖,i+1 cos θi+1
(
1 +W‖,i

)
+ A−

‖,i+1 cos θi+1
(
1 −W‖,i

)}
A−

‖,i cos θi = e−jkzidi

2

{
A+

‖,i+1 cos θi+1
(
1 −W‖,i

)
+ A−

‖,i+1 cos θi+1
(
1 +W‖,i

)}
(1.465)
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よって，

A+
‖,i = ejkzidi

2
cos θi+1

cos θi

{
A+

‖,i+1

(
1 +W‖,i

)
+ A−

‖,i+1

(
1 −W‖,i

)}
(1.466)

A−
‖,i = e−jkzidi

2
cos θi+1

cos θi

{
A+

‖,i+1

(
1 −W‖,i

)
+ A−

‖,i+1

(
1 +W‖,i

)}
(1.467)

したがって，媒質 (1)（半無限，d1 = 0）から N 層（媒質 (2), (3), · · · , (N+1)）の多層誘電
体（媒質 (N+2)は半無限）に平面波が入射したときの透過係数 T，反射係数 Rは，次式に
よって得られる．

T =
A+
N+2
A+

1

∣∣∣∣∣
A+

N+2=1, A−
N+2=0

= 1
A+

1

∣∣∣∣∣
A+

N+2=1, A−
N+2=0

(1.468)

R = A−
1

A+
1

∣∣∣∣∣
A+

N+2=1, A−
N+2=0

(1.469)
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CHAPTER 2

電磁波の積分表示

　まず，マクスウェルの方程式を拡張し，磁流源を導入した電磁場の積分形式を導出する，
次に，ストラットンの定理およびベクトル・ヘルムホルツ方程式を用いて，波源が存在する
場合における電磁界の一般的な積分表示式を求める．特に，有限の開口面からの電磁波放射
を扱う開口面法について詳述し、等価な二次波源の概念に基づき、開口面上の電磁界分布か
ら放射される電磁界を積分的に求める手法を解説する．さらに，フレネル領域およびフラウ
ンホーファ領域における放射電磁界の近似表現を導き，フーリエ変換との関連性にも言及す
ることで，電磁波放射に関する基礎理論を体系的に説明する．

2.1 ストラットンの定理

ベクトル a，bについては，次のような発散に関する関係式がある．

∇ · (a × b) = b · ∇ × a − a · ∇ × b (2.1)

いま，ベクトル aの代わりに F，ベクトル bの代わりに∇ × G を考えると，

∇ · (F × ∇ × G) = (∇ × G) · (∇ × F ) − F · ∇ × (∇ × G) (2.2)

両辺を交換し，体積積分すると，˚
V

{(∇ × G) · (∇ × F ) − F · ∇ × (∇ × G)}dV =
˚

V

∇ · (F × ∇ × G)dV

(2.3)

ガウスの発散定理（Gauss’s divergence theorem）を用いて上式の右辺を面積分で表すと，
˚

V

{(∇ × G) · (∇ × F ) − F · ∇ × (∇ × G)}dV =
‹
S

(F × ∇ × G) · ndS (2.4)
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これをベクトルのグリーンの第一定理（first Green’s theorem）という．これより，F とG

を入れ換えると，
˚

V

{(∇ × G) · (∇ × F ) − G · ∇ × (∇ × F )}dV =
‹
S

(G × ∇ × F ) · ndS (2.5)

式 (2.4)と式 (2.5)の差より，ベクトルのグリーンの第二定理（second Green’s theorem），
いわゆるストラットンの定理（Stratton’s theorems）が得られ，次のようになる．

˚
V

(F · ∇ × ∇ × G − G · ∇ × ∇ × F ) dV =
‹
S

(G × ∇ × F − F × ∇ × G) · ndS

(2.6)

ただし，nは外向き法線ベクトルを示す．

2.2 波源があるときのベクトル・ヘルムホルツ方程式

2.2.1 磁流源の導入

Maxwellの方程式において，電流源 J および電荷 ρに加えて，仮想的な磁流源（magnetic
current）Jm および磁荷（magnetic charge）ρm を導入すると，次のようになる．

∇ × E + jωµH = −Jm (2.7)
∇ × H − jωεE = J (2.8)

∇ · H = ρm
µ

(2.9)

∇ · E = ρ

ε
(2.10)

∇ · J + jωρ = 0 (2.11)
∇ · Jm + jωρm = 0 (2.12)

式 (2.7)において回転を求めると，

∇ × ∇ × E + jωµ∇ × H = −∇ × Jm (2.13)

式 (2.8)を用いて，∇ × H を消去して，

∇ × ∇ × E + jωµ(jωεE + J) = −∇ × Jm (2.14)

ここで，

k2 ≡ ω2εµ (2.15)

とおくと，

∇ × ∇ × E − k2E = −jωµJ − ∇ × Jm (2.16)
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これは，波源があるときのベクトルヘルムホルツ方程式（vector Helmholtz equations with
sources）である．
同様にして，磁界H について次式が得られる（導出省略）．

∇ × ∇ × H − k2H = −jωεJm + ∇ × J (2.17)

このようにして得られたベクトルヘルムホルツ方程式を基に，源による電磁界の一般的な表
現を求めていく．

2.2.2 電磁流源がある場合の双対性

Maxwellの方程式に磁流源を導入したとき，次のような双対性（duality）があることが
わかる．

E → H , J → Jm, ρ → ρm (2.18)
H → −E, Jm → −J , ρm → ρ (2.19)

2.3 電磁界の一般的な積分表示式

ストラットンの定理を基にして，電磁界の一般的な積分表示式を導出*1しよう．

2.3.1 ストラットンの定理を基にした積分

次の図のように，閉曲面 S1, S2, · · · , Sn によって囲まれた領域 V を考え，法線ベクトル
nを曲面上に領域 V の内部に向くように定義する．

˚
V

(G · ∇ × ∇ × F − F · ∇ × ∇ × G) dV

=
‹
S1+S2+ ··· +Sn

(F × ∇ × G − G × ∇ × F ) · (−n) dS (2.20)

ただし，法線ベクトル nは通常のストラットンの定理の式とは逆向き，つまり領域 V の内
向きであることに注意すること．上式において，ベクトル F，Gを次のようにおく．

F ≡ E (2.21)

G ≡ e−jkr

r
a = ψa (2.22)

*1 Samuel Silver, “Microwave Antenna Theory and Design,”3.8. General Solution of the Field Equations
in Terms of the Sources, for a Time-periodic Field, McGraw Hill (1949), IEE, reprint (1984), ISBN-13:
978-0863410178.
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ただし，E は電界，rは点 P からの距離，aは任意の定ベクトルを示す．このとき，ψは次
に示す波源のないスカラヘルムホルツ方程式を満足する．

∇2ψ + k2ψ = 0 (2.23)

図 2.1. 閉曲面 Si と単位ベクトル n の定義

いま，上式のラプラシアン ∇2 を，球座標系 (r, θ, φ)で一般的に表すと，

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1
r2 sin2 θ

∂2

∂φ2 (2.24)

であるが，ψ = ψ(r)ゆえ，θ，φに依らないので，

∇2ψ = 1
r2

∂

∂r

(
r2∂ψ

∂r

)
(2.25)

関数 G は点 P で特異点となるので，点 P を中心とする半径 r0 の球面 Σ を考え，
S1, S2, · · · , SnとΣで囲まれた領域を V ′とする．ただし，点 P は閉曲面 Si (i = 1, 2, · · · , n)
上にある場合は後述するが，ここでは面 Si 上にないものとする．
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図 2.2. 閉曲面 Si と点 P を囲む球面 Σ

これより，ストラットンの定理は，˚
V ′

(ψa · ∇ × ∇ × E − E · ∇ × ∇ × ψa) dV

=
‹
S1+S2+ ··· +Sn+Σ

(−E × ∇ × ψa + ψa × ∇ × E) · n dS (2.26)

ただし，Σは ψ の発散する領域を囲む閉曲面，V ′ は V の中で Σで囲まれる領域を除いた
領域を示す．また，rは閉曲面 Σの中の点 Pと領域 V ′ 中の任意の点までの距離を示す．得
られた体積積分は電界を用いて計算する式となっているので，ここでは，体積積分を変形し
て波源に関する積分表示を導出していく．

ψa · ∇ × ∇ × E = ψa · (k2E − jωµJ − ∇ × Jm)
= a · (ψk2E − jωµJψ − ψ∇ × Jm) (2.27)

また，被積分関数の第 2項は，ベクトル公式

∇ × ∇ × b = ∇∇ · b − ∇2b (2.28)

より（aは定ベクトル），

E · ∇ × ∇ × ψa = E · {∇∇ · (ψa) − ∇2(ψa)} = E · {∇(a · ∇ψ) − a∇2ψ}
= E · {∇(a · ∇ψ) + ak2ψ} (2.29)

よって，式 (2.26)の左辺の被積分関数は次のようになる．

ψa · ∇ × ∇ × E − E · ∇ × ∇ × ψa

= a · (−jωµJψ − ψ∇ × Jm) − E · ∇(a · ∇ψ) (2.30)
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次に，体積積分を一部，面積積分に変換するため，∇に関する変形を行う．回転に関するベ
クトル公式

∇ × (φb) = (∇φ) × b + φ∇ × b (2.31)

を一部移項して変形して，

φ∇ × b = ∇ × (φb) − (∇φ) × b

= ∇ × (φb) + b × ∇φ (2.32)

これより，

ψ∇ × Jm = ∇ × (ψJm) + Jm × ∇ψ (2.33)

また，発散に関するベクトル公式

∇ · (φb) = (∇φ) · b + φ∇ · b (2.34)

を一部移項して変形して

(∇φ) · b = b · ∇φ = ∇ · (bφ) − φ∇ · b (2.35)

これより，

E · ∇(a · ∇ψ) = ∇ · {E(a · ∇ψ)} − (a · ∇ψ)∇ · E

= ∇ · {E(a · ∇ψ)} − (a · ∇ψ)ρ
ε

(2.36)

したがって，式 (2.26)の左辺の被積分関数は次のようになる．

sψa · ∇ × ∇ × E − E · ∇ × ∇ × ψa

= −a · jωµJψ − a · {∇ × (ψJm) + Jm × ∇ψ}

−
[
∇ · {E(a · ∇ψ)} − ρ

ε
a · ∇ψ

]
(2.37)

よって，式 (2.26)の左辺は次のようになる．
˚

V ′

[
− a · jωµJψ − a · {∇ × (ψJm) + Jm × ∇ψ}

− ∇ · {E(a · ∇ψ)} + ρ

ε
a · ∇ψ

]
dV

= a ·
˚

V ′

(
−jωµJψ − Jm × ∇ψ + ρ

ε
∇ψ

)
dV

− a ·
˚

V ′
∇ × (ψJm)dV −

ˆ
V ′

∇ · {E(a · ∇ψ)}dV (2.38)
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最後の項は，ガウスの発散定理より，通常とは逆に nを V の内向きにとると，˚
V ′

∇ · {E(a · ∇ψ)}dV =
‹
S1+ ··· +Σ

{E(a · ∇ψ)} · (−n) dS

= −a ·
‹
S1+ ··· +Σ

(∇ψ)(E · n) dS (2.39)

また，ベクトルのガウスの定理（法線ベクトル nは逆向き）
˚

V

∇ × b dV =
‹
S

(−n) × b dS (2.40)

より，
˚

V ′
∇ × (ψJm) dV =

‹
S1+ ··· +Σ

(−n) × (ψJm) dS (2.41)

両辺に定ベクトル aとのスカラ積をとると，

a ·
˚

V ′
∇ × (ψJm) dV = −a ·

‹
S1+ ··· +Σ

ψn × Jm dS (2.42)

次に，式 (2.26)の右辺の被積分関数について，aとのスカラ積の形に変形していく．ま
ず，その第 1項は，

(E × ∇ × ψa) · n = [E × {(∇ψ) × a}] · n = (n × E) · {(∇ψ) × a}
= a · {(n × E) × (∇ψ)} (2.43)

そして，第 2項は，Maxwellの方程式を用いて，

{ψa × (∇ × E)} · n = {ψa × (−jωµH − Jm)} · n

= −jωµψ(a × H) · n − ψ(a × Jm) · n

= −jωµψ(H × n) · a − ψ(Jm × n) · a

= jωµψa · (n × H) + ψa · (n × Jm) (2.44)

以上の結果より，式 (2.26)は次のようになる．

− a ·
˚

V ′

(
jωµJψ + Jm × ∇ψ − ρ

ε
∇ψ

)
dV

+ a ·
‹
S1+ ··· +Σ

(∇ψ)(E · n) dS + a ·
‹
S1+ ··· +Σ

ψn × Jm dS

= −a ·
‹
S1+ ··· +Σ

(n × E) × (∇ψ)dS

+ a ·
‹
S1+ ··· +Σ

{jωµψ(n × H) + ψn × Jm} dS (2.45)
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体積積分と面積積分で整理すると，

−a ·
˚

V ′

(
jωµJψ + Jm × ∇ψ − ρ

ε
∇ψ

)
dV

= a ·
‹
S1+ ··· +Σ

{
− (n × E) × (∇ψ) + jωµψ(n × H) − (∇ψ)(E · n)

}
dS (2.46)

得られた式は任意のベクトル aについて成り立つから，両辺の積分は等しくならなければ
いけない．つまり，˚

V ′

(
jωµψJ + Jm × ∇ψ − ρ

ε
∇ψ

)
dV

=
‹
S1+ ··· +Σ

{(n × E) × ∇ψ − jωµψ(n × H) + (n · E)∇ψ} dS (2.47)

球面 Σに関する面積分は，極限では点 P における値で決まり，この積分について計算して
いく．そこで，球面 Σに関する面積分を左辺に分離して表すと，‹

Σ
{(n × E) × ∇ψ − jωµψ(n × H) + (n · E)∇ψ} dS

=
˚

V ′

(
jωµψJ + Jm × ∇ψ − ρ

ε
∇ψ

)
dV

−
‹
S1+ ··· +Sn

{
(n × E) × ∇ψ − jωµψ(n × H) + (n · E)∇ψ

}
dS (2.48)

そして，閉曲面 Σ の中の点 P を観測点として考える．ここで，ψ は r のみの関数である
から，

∇ψ(r) = ar
dψ

dr
= ar

d

dr

(
e

−jkr

r

)
= −

(
jk + 1

r

)
e

−jkr

r
ar (2.49)

閉曲面 Σは，点 P を中心とする半径 r0 の球と考えており，Σの外向き法線ベクトルを n

とすると，ar = n より，

(∇ψ)r=r0
= −

(
jk + 1

r0

)
e

−jkr0

r0
n = −

(
jk + 1

r0

)
ψ0n (2.50)

ここで，

ψ(r0) = e
−jkr0

r0
≡ ψ0 (2.51)

これより，Σ に沿った面積分は次のようになる．‹
Σ

{(n × E) × ∇ψ − jωµψ(n × H) + (n · E)∇ψ} dS

=
‹

Σ

{
−(n × E) ×

(
jk + 1

r0

)
n − jωµ(n × H) −n · E

(
jk + 1

r0

)
n
}
ψ0dS

=
‹

Σ

[
−jωµ(n × H) −

(
jk + 1

r0

)
{(n × E) × n + (n · E)n}

]
ψ0dS (2.52)
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ベクトル公式

(b × c) × a = (a · b)c − (a · c)b (2.53)

より，

(n × E) × n = (n · n)E − (n · E)n
= E − (n · E)n (2.54)

よって，

E = (n × E) × n + (n · E)n (2.55)

これより，
‹

Σ
{ } dS =

‹
Σ

{
−jωµ(n × H) −

(
jk + 1

r0

)
E
}
ψ0dS (2.56)

立体角要素 dΩを用いると，
‹

Σ
{ } dS =

‹
Σ

{
−jωµ(n × H) −

(
jk + 1

r0

)
E
}
e−jkr0r0dΩ

= −jωµr0e
−jkr0

‹
Σ

{
(n × H) +

√
ε

µ
E

}
dΩ − e−jkr0

‹
Σ

EdΩ (2.57)

r0 → 0のとき，上式の第 1項はゼロになるから，

lim
r0→0

‹
Σ

{ } dS = lim
r0→0

(
−e−jkr0

‹
Σ

EdΩ
)

= −Ep

‹
Σ
dΩ

= −4πEp (2.58)

ただし，Ep は点 P における電界 E を示す．

2.3.2 波源による電磁界の積分表示式

観測点 P における電界 Ep は，式 (2.58)を式 (2.48)に代入して，

Ep = − 1
4π

˚
V

(
jωµψJ + Jm × ∇ψ − ρ

ε
∇ψ

)
dV

+ 1
4π

‹
S1+ ···

{−jωµψ(n × H) + (n × E) × ∇ψ + (n · E)∇ψ} dS (2.59)

同様にして，点 P における磁界Hp は次のようになる（導出省略）．

Hp = − 1
4π

˚
V

(
jωεψJm − J × ∇ψ − ρm

µ
∇ψ

)
dV

+ 1
4π

‹
S1+ ···

{jωεψ(n × E) + (n × H) × ∇ψ + (n · H)∇ψ} dS (2.60)
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ただし，閉曲面 Si 上の電磁界は，領域 V ′ 以外の領域に存在する源によって励振されるも
のであり，等価波源（equivalent sources），あるいは 2次波源ともいう．

2.3.3 等価波源

領域 V ′ の積分で見られる源と同様にして，等価的な電流K，磁流Km，電荷 η，磁荷
ηm を次のように定義する．

K = n × H , Km = −(n × E) (2.61)
η = ε(n · E), ηm = µ(n · H) (2.62)

これより，電界 Ep，磁界Hp の表示式は，実際の源が３次元的な分布であるのに対して，
等価波源は２次元的な分布となっているだけで，式の形は同じであることがわかる．

Ep = 1
4π

˚
V

(
−jωµψJ − Jm × ∇ψ + ρ

ε
∇ψ

)
dV

+ 1
4π

‹
S1+ ··· +Sn

(
−jωµψK − Km × ∇ψ + η

ε
∇ψ

)
dS (2.63)

Hp = 1
4π

˚
V

(
−jωεψJm + J × ∇ψ + ρm

µ
∇ψ

)
dV

+ 1
4π

‹
S1+ ··· +Sn

(
−jωεψKm + K × ∇ψ + ηm

µ
∇ψ

)
dS (2.64)

2.3.4 等価波源がある場合の双対性

電磁流源がある場合（導電率 σ = 0のとき），双対性（duality）より，

E → H , J → Jm, ρ → ρm, µ → ε (2.65)
H → −E, Jm → −J , ρm → ρ, ε → µ (2.66)

等価波源についても，次のような双対性があることがわかる*2．

K = n × H → Km = n × (−E) = −(n × E) (2.67)
Km = E × n → −K = H × n = −(n × H) (2.68)
η = ε(n · E) → ηm = µ(n · H) (2.69)
ηm = µ(n · H) → −η = ε(n · (−E)) = −µ(n · E) (2.70)

*2 A. Ishimaru, “Electromagnetic Wave Propagation, Radiation, and Scattering From Fundamentals to
Applications,” 2.8. Duality Principle and Symmetry of Maxwell’s Equations, 2dn ed., p.27, IEEE
Press, Wiley (2017), ISBN: 978-1-119-07969-9.
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2.4 無限空間での電磁界の積分表示式

2.4.1 閉曲面 S内部の領域 V

領域 V の中の空洞領域にあたる閉曲面がなく，ただ一つの閉曲面 S（半径 R）によって
領域 V が囲まれている場合を考える*3．電界 Ep，および磁界Hp は，

Ep = 1
4π

˚
V

(
−jωµψJ − Jm × ∇ψ + ρ

ε
∇ψ

)
dV

+ 1
4π

‹
S(R)

{
− jωµψ(n × H) + (n × E) × ∇ψ + (n · E)∇ψ

}
dS (2.71)

Hp = 1
4π

˚
V

(
−jωεψJm + J × ∇ψ + ρm

µ
∇ψ

)
dV

+ 1
4π

‹
S(R)

{
jωεψ(n × E) + (n × H) × ∇ψ + (n · H)∇ψ

}
dS (2.72)

この球の半径 Rに沿う単位ベクトルを aR とすると，

(∇ψ)r=R = −
(
jk + 1

R

)
e

−jkR

R
aR (2.73)

一方，nは領域 V の方向を向く法線ベクトルゆえ，n = −aR．また，ベクトル公式

E = (aR × E) × aR + (aR · E)aR (2.74)

より，Ep に関する面積分は次のようになる．

1
4π

‹
S(R)

{
− jωµψ(n × H) + (n × E) × ∇ψ + (n · E)∇ψ

}
dS

= 1
4π

‹
S(R)

[
− jωµ(−aR × H)

−
(
jk + 1

R

){
(−aR × E) × aR + (−aR · E)aR

}]e−jkR

R
dS

= 1
4π

‹
S(R)

{
jωµ(aR × H) +

(
jk + 1

R

)
E
}
e−jkR

R
dS

= 1
4π

‹
S(R)

[
jωµ

{
(aR × H) +

√
ε

µ
E

}
+ E

R

]
e−jkR

R
dS (2.75)

*3 Samuel Silver, “Microwave Antenna Theory and Design,” 3.9. Field Due to Sources in an Unbounded
Region, McGraw Hill (1949), IEE, reprint (1984), ISBN-13: 978-0863410178.
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2.4.2 放射条件

半径 R を無限に大きくしていくと，球の面積は R2 に比例して増加するので，式 (2.75)
を次のように変形して積分を評価していく．

1
4π

‹
S(R)

{
− jωµψ(n × H) + (n × E) × ∇ψ + (n · E)∇ψ

}
dS

= 1
4π

‹
S(R)

[
jωµR

{
(aR × H) +

√
ε

µ
E

}
+ RE

R

]
e−jkRdS

R2 (2.76)

電磁界が次の条件を満足するとき，

lim
R→∞

RE is finite. (2.77)

lim
R→∞

R

{
(aR × H) +

√
ε

µ
E

}
= 0 (2.78)

式 (2.78)と単位ベクトル aR とのスカラ積およびベクトル積は次のようにゼロになる．

lim
R→∞

aR ·R
{

(aR × H) +
√
ε

µ
E

}
= lim

R→∞

√
ε

µ
(RE) · aR = 0 (2.79)

lim
R→∞

aR ×R

{
(aR × H) +

√
ε

µ
E

}
= lim

R→∞
R

{
−H +

√
ε

µ
(aR × E)

}
= 0 (2.80)

磁界Hp に関しても同様に積分を変形して，

1
4π

‹
S(R)

{
jωεψ(n × E) + (n × H) × ∇ψ + (n · H)∇ψ

}
dS

= 1
4π

‹
S(R)

[
jωεR

{
−(aR × E) +

√
µ

ε
H
}

+ RH

R

]
e−jkRdS

R2 (2.81)

電磁界が次の条件を満足するとき，

lim
R→∞

RH is finite. (2.82)

lim
R→∞

R
{

−(aR × E) +
√
µ

ε
H
}

= 0 (2.83)

同様にして，式 (2.83) と単位ベクトル aR とのスカラ積およびベクトル積は次のようにゼ
ロになる．

lim
R→∞

aR ·R
{

−(aR × E) +
√
µ

ε
H
}

= lim
R→∞

√
µ

ε
(RH) · aR = 0 (2.84)

lim
R→∞

aR ×R
{

−(aR × E) +
√
µ

ε
H
}

= lim
R→∞

R
{

E −
√
µ

ε
(H × aR)

}
= 0 (2.85)

これらの条件は，R → ∞において用いられる放射条件と呼ばれるもので，次のような遠方
界の特性がわかる．
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• 電磁界は，大きく見積もっても R−1 で減少していく．
• 電磁界の aR 方向成分は，さらに小さくなり，R−1 のオーダーで考えると，電界と磁
界の成分は，aR の方向に直交している．

• R−1 のオーダーにおいては，電界と磁界は直交している．

したがって，遠方の電磁界は，球 S(R)の中心から伝搬する平面波と類似の振る舞いをする
ものと考えことができる．

2.4.3 無限空間における電磁界

球 S(R)を無限に大きくして，境界面のない無限空間における電磁界 Ep，Hp は次のよ
うになる．

Ep = 1
4π

˚
V

(
−jωµψJ − Jm × ∇ψ + ρ

ε
∇ψ

)
dV (2.86)

Hp = 1
4π

˚
V

(
−jωεψJm + J × ∇ψ + ρm

µ
∇ψ

)
dV (2.87)

ただし，実際の積分範囲は，波源の存在する有限領域にとればよい．連続の式

∇ · J + jωρ = 0 (2.88)
∇ · Jm + jωρm = 0 (2.89)

より，電荷 ρ，磁荷 ρm を電流 J，磁流 Jm によって表すと次のようになる．

Ep = 1
4π

˚
V

(
−jωµψJ − Jm × ∇ψ − ∇ · J

jωε
∇ψ

)
dV

= j

4πωε

˚
V

{
−k2ψJ + jωεJm × ∇ψ + (∇ · J)(∇ψ)

}
dV (2.90)

Hp = 1
4π

˚
V

(
−jωµψJm + J × ∇ψ − ∇ · Jm

jωµ
∇ψ

)
dV

= j

4πωµ

˚
V

{
−k2ψJm − jωµJ × ∇ψ + (∇ · Jm)(∇ψ)

}
dV (2.91)

さて，上式の第 3項は，さらに変形でき，まず電界 Ep については，

(∇ · J)(∇ψ) = (∇ · J)
(
∂ψ

∂x
ax + ∂ψ

∂y
ay + ∂ψ

∂z
az

)

= ax
∂ψ

∂x
(∇ · J) + ay

∂ψ

∂y
(∇ · J) + az

∂ψ

∂z
(∇ · J) (2.92)

ここで，ベクトル公式∇ · (φa) = a · (∇φ) + φ(∇ · a) を変形した

φ(∇ · a) = ∇ · (aφ) − a · (∇φ) (2.93)
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より，式 (2.92)の各成分は，次のようなる．

(∇ · J)(∇ψ) = ax

{
∇ ·

(
J
∂ψ

∂x

)
− J · ∇

(
∂ψ

∂x

)}

+ ay

{
∇ ·

(
J
∂ψ

∂y

)
− J · ∇

(
∂ψ

∂y

)}
+ az

{
∇ ·

(
J
∂ψ

∂z

)
− J · ∇

(
∂ψ

∂z

)}

=
[
ax∇ ·

(
J
∂ψ

∂x

)
+ ay∇ ·

(
J
∂ψ

∂y

)
+ az∇ ·

(
J
∂ψ

∂z

)]

−
[
ax

{
J · ∇

(
∂ψ

∂x

)}
+ ay

{
J · ∇

(
∂ψ

∂y

)}
+ az

{
J · ∇

(
∂ψ

∂z

)}]
(2.94)

いま，J ≡ Jxax + Jyay + Jzaz とおくと，式 (2.94)の第 2項は次のようになる．

−
[
ax

{
J · ∇

(
∂ψ

∂x

)}
+ ay

{
J · ∇

(
∂ψ

∂y

)}
+ az

{
J · ∇

(
∂ψ

∂z

)}]

= −ax

(
Jx
∂2ψ

∂x2 + Jy
∂2ψ

∂y∂x
+ Jz

∂2ψ

∂z∂x

)

− ay

(
Jx

∂2ψ

∂x∂y
+ Jy

∂2ψ

∂y2 + Jz
∂2ψ

∂z∂y

)
− az

(
Jx

∂2ψ

∂x∂z
+ Jy

∂2ψ

∂y∂z
+ Jz

∂2ψ

∂z2

)

= −
[
Jx

∂

∂x
(∇ψ) + Jy

∂

∂y
(∇ψ) + Jz

∂

∂z
(∇ψ)

]
= −(J · ∇)∇ψ (2.95)

一方，第 1項については，ガウスの発散定理より，˚
V

[
ax∇ ·

(
J
∂ψ

∂x

)
+ ay∇ ·

(
J
∂ψ

∂y

)
+ az∇ ·

(
J
∂ψ

∂z

)]
dV

= ax

˚
V

∇ ·
(

J
∂ψ

∂x

)
dV + ay

˚
V

∇ ·
(

J
∂ψ

∂y

)
dV + az

˚
V

∇ ·
(

J
∂ψ

∂z

)
dV

= ax

¨
S

(
J
∂ψ

∂x

)
· (−n)dS + ay

¨
S

(
J
∂ψ

∂y

)
· (−n)dS + az

¨
S

(
J
∂ψ

∂z

)
· (−n)dS

= −
¨
S

(n · J)∂ψ
∂x

axdS −
¨
S

(n · J)∂ψ
∂y

aydS −
¨
S

(n · J)∂ψ
∂z

azdS

= −
¨
S

(n · J)∇ψ dS (2.96)

波源は有限領域に存在する場合を取り扱っているので，無限遠方にとった積分経路上には電
流源はなく，上の積分は値を持たないことになる．つまり，¨

S(R)
(n · J)∇ψ dS = 0 (2.97)

磁界Hp についても同様であり，次式が成り立つ．¨
S(R)

(n · Jm)∇ψ dS = 0 (2.98)
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これより，電磁界は次のようになる．

Ep = j

4πωε

˚
V

{
− k2ψJ + jωεJm × ∇ψ − (J · ∇)(∇ψ)

}
dV (2.99)

Hp = j

4πωµ

˚
V

{
− k2ψJm − jωµJ × ∇ψ − (Jm · ∇)(∇ψ)

}
dV (2.100)

さらに，ψ = e−jkr

r より，

Ep = − j

4πωε

˚
V

{
(J · ∇)∇ + k2J − jωεJm × ∇

}(e−jkr

r

)
dV (2.101)

Hp = − j

4πωµ

˚
V

{
(Jm · ∇)∇ + k2Jm + jωµJ × ∇

}(e−jkr

r

)
dV (2.102)

ただし，波源は有限領域にあり，r は源から観測点 P までの距離を示し，∇は波源の座標
成分に関する微分演算子である．

2.5 波源の 3次元分布による放射電磁界

自由空間での電磁流源による電磁界の積分表示式における ∇演算子を実行して一般的な
式の導出を行い，それから放射界領域，遠方界領域での電磁界の近似について説明する*4．

2.5.1 (J · ∇)∇ψ の計算

まず，電界 Ep の表示式の第 1項に見られる (J · ∇)∇ψ を計算しよう．そこで，観測点
P を固定したとき，点 P を原点にとった球座標系 (r, θp, φp) によって電流源 J の座標を表
せば，演算子∇はこれら座標成分に関する微分演算となり，次のようになる．

(J · ∇)∇ψ = (J · ∇)∇
(
e−jkr

r

)
(2.103)

ただし，

∇ψ = ∇
(
e−jkr

r

)
= arp

∂

∂r

(
e−jkr

r

)
= −arp

(
jk + 1

r

)
e−jkr

r
(2.104)

ここで，

arp = sin θp(cosφpax + sinφpay) + cos θpaz (2.105)

*4 Samuel Silver, “Microwave Antenna Theory and Design,” 3.10. The far-zone Fields, McGraw Hill
(1949), IEE, reprint (1984), ISBN-13: 978-0863410178.
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いま，

α(r) ≡ −
(
jk + 1

r

)
e−jkr

r
(2.106)

とおくと，

∇ψ = arpα (2.107)

これより，与式は次のようになる．

(J · ∇)∇ψ = (J · ∇) (arpα)

= Jx
∂

∂x
(arpα) + Jy

∂

∂y
(arpα) + Jz

∂

∂z
(arpα)

= Jx

(
∂arp
∂x

α + arp
∂α

∂x

)
+ Jy

(
∂arp
∂y

α + arp
∂α

∂y

)
+ Jz

(
∂arp
∂z

α + arp
∂α

∂z

)

= α

(
Jx
∂arp
∂x

+ Jy
∂arp
∂y

+ Jz
∂arp
∂z

)
+ arp

(
Jx
∂α

∂x
+ Jy

∂α

∂y
+ Jz

∂α

∂z

)
= α(J · ∇)arp + arp(J · ∇α) (2.108)

上式の第 1項は，

α(J · ∇)arp = α(J · ∇)
{
(arp · ax)ax + (arp · ay)ay + (arp · az)az

}
= axα

{
J · ∇(arp · ax)

}
+ ayα

{
J · ∇(arp · ay)

}
+ azα

{
J · ∇(arp · az)

}
(2.109)

上式の ax，ay，az は定ベクトルであるので，任意の定ベクトルを aとおくと，

∇(arp · a) = arp
∂

∂r
(arp · a) + aθp

1
r

∂

∂θp
(arp · a) + aφp

1
r sin θp

∂

∂φp
(arp · a)

= aθp
1
r

(
∂arp
∂θp

· a

)
+ aφp

1
r sin θp

(
∂arp
∂φp

· a

)
(2.110)

ここで，

∂arp
∂θp

= ∂

∂θp

{
sin θp(cosφpax + sinφpay) + cos θpaz

}
= cos θp(cosφpax + sinφpay) − sin θpaz
= aθp (2.111)

∂arp
∂φp

= ∂

∂φp

{
sin θp(cosφpax + sinφpay) + cos θpaz

}
= sin θp(− sinφpax + cosφpay)
= sin θpaφp (2.112)
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これより，

∇(arp · a) = aθp
1
r

(aθp · a) + aθp
1

r sin θp
(sin θpaφp · a)

= 1
r

{
(a · aθp)aθp + (a · aφp)aφp

}
= 1
r

{
a − (a · arp)arp

}
(2.113)

上式の aを，ax，ay，az とおいても成り立つ．よって，式 (2.109)を式 (2.113)に用いて，

α(J · ∇)arp

= axα
(

J ·
[1
r

{ax − (ax · arp)arp}
])

+ ayα
(

J ·
[1
r

{ay − (ay · arp)arp}
])

+ azα
(

J ·
[1
r

{az − (az · arp)arp}
])

= α

r

[{
(J · ax)ax + (J · ay)ay + (J · az)az

}
− (J · arp)

{
(arp · ax)ax + (arp · ay)ay + (arp · az)az

}]
= α

r
{J − (J · arp)arp} (2.114)

一方，式 (2.108)の第 2項の ∇αは，

∇α = ∇
{

−
(
jk + 1

r

)
e−jkr

r

}
= arp

∂

∂r

{
−
(
jk + 1

r

)
e−jkr

r

}

= arp

{
1
r2 +

(
jk + 1

r

)2} e−jkr

r
= arp

(
−k2 + j2k

r
+ 2
r2

)
e−jkr

r
(2.115)

したがって，(J · ∇)∇ψ は次のようになる．

(J · ∇)∇ψ = α(J · ∇)arp + arp(J · ∇α)

=
{

−
(
jk + 1

r

)
e−jkr

r

}
1
r

{J − (J · arp)arp} + arp(J · arp)
(

−k2 + j2k
r

+ 2
r2

)
e−jkr

r

=
[{

−k2 + 3
r

(
jk + 1

r

)}
(J · arp)arp −

(
jk + 1

r

)
J

r

]
e−jkr

r
(2.116)

さらに，arp = −ar より，

(J · ∇)∇ψ = (J · ∇)∇
(
e−jkr

r

)

=
{

−k2 (J · ar) ar + 3
r

(
jk + 1

r

)
(J · ar) ar − J

r

(
jk + 1

r

)}
e−jkr

r
(2.117)
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2.5.2 類似のベクトル演算

参考までに，このような演算とよく似たベクトル演算として，次のようなものもある．

(J · ∇)φ =
[
(Jxax + Jyay + Jzaz) ·

(
ax

∂

∂x
+ ay

∂

∂y
+ az

∂

∂z

)]
φ

= Jx
∂φ

∂x
+ Jy

∂φ

∂y
+ Jz

∂φ

∂z

= J · ∇φ (2.118)

2.5.3 一般的な電磁界の積分表示式

得られた結果を用いれば，電界 Ep は次のようになる．

Ep = − j

4πωε

˚
V

{
(J · ∇)∇

(
e−jkr

r

)
+k2J

(
e−jkr

r

)
− jωεJm × ∇

(
e−jkr

r

)}
dV

= − j

4πωε

˚
V

{
−k2 (J · ar) ar + 3

r

(
jk + 1

r

)
(J · ar) ar

−J

r

(
jk + 1

r

)
+ k2J − jωεJm × ar

(
jk + 1

r

)}
e−jkr

r
dV (2.119)

上式を rについて整理すると次のようになる．

Ep = − j

4πωε

(˚
V

[
k2 {J − (J · ar)ar} + ωεkJm × ar

] e−jkr

r
dV

+ jk

˚
V

{
3(J · ar)ar − J −

√
ε

µ
Jm × ar

}
e−jkr

r2 dV

+
˚

V

{3(J · ar)ar − J} e
−jkr

r3 dV

)
(2.120)

2.5.4 放射界近似

波源が原点近傍にある場合，原点から観測点までの距離を Rとおくと，

Ep = − j

4πωε

(
e−jkR

R

˚
V

[
k2 {J − (J · ar)ar} +ωεkJm × ar]

R

r
e−jk(r−R)dV

+ jk
e−jkR

R2

˚
V

{3(J · ar)ar − J −
√
ε

µ
Jm × ar

}(
R

r

)2
e−jk(r−R)dV

+e
−jkR

R3

˚
V

{3(J · ar)ar − J}
(
R

r

)3
e−jk(r−R)dV

)
(2.121)
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上式の第 1項は放射電界を表し，1/R2，1/R3 が十分小さい場合，

Ep = − j

4πωε

˚
V

[
k2 {J − (J · ar)ar} + ωεkJm × ar

] e−jkr

r
dV +O

( 1
R2

)
(2.122)

同様にして，磁界Hp については次式が得られる（導出省略）．

Hp = − j

4πωµ

˚
V

[
k2 {Jm − (Jm · ar)ar} − ωµkJ × ar

] e−jkr

r
dV +O

( 1
R2

)
(2.123)

2.6 閉曲面上の 2次波源による放射電磁界

2.6.1 面電磁流源による放射電磁界

領域 V を囲む球は，前節と同様に無限に大きいものを考え，ここでは，領域 V には源が
なく，領域 V の空洞閉曲面 Si 上に等価波源が分布している場合を考えてみる．このとき，
源は閉曲面 Si 内部にのみ存在するので，領域 V における体積積分は値をもたない．した
がって，電磁界は閉曲面 Si に沿った面積分で表され，次のようになる．

Ep = 1
4π

‹
Si

(
−jωµψK − Km × ∇ψ + η

ε
∇ψ

)
dS (2.124)

Hp = 1
4π

‹
Si

(
−jωεψKm + K × ∇ψ + ηm

µ
∇ψ

)
dS (2.125)

ここで，

∇ψ = ∇
(
e−jkr

r

)
= ar

(
jk + 1

r

)
e−jkr

r
(2.126)

ただし，観測点 P は，領域 V におかれるので，閉曲面 Si の外側ならどこにおいてもよい．
また，r は波源のある点から観測点 P までの距離，ar は r に沿う単位ベクトルを示す．こ
れより，

Ep = 1
4π

‹
Si

[
−jωµK −

(
jk + 1

r

)
Km × ar + η

ε

(
jk + 1

r

)
ar

]
e−jkr

r
dS

= −jωµ

4π

‹
Si

(
K +

√
ε

µ
Km × ar − η

√
εµ

ar

)
e−jkr

r
dS +O

( 1
R2

)

Hp = 1
4π

‹
Si

[
−jωεKm +

(
jk + 1

r

)
K × ar + ηm

µ

(
jk + 1

r

)
ar

]
e−jkr

r
dS

= −jωε

4π

‹
Si

(
Km −

√
µ

ε
K × ar − ηm√

εµ
ar

)
e−jkr

r
dS +O

( 1
R2

)
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ただし，Rは座標原点から観測点 P までの距離を示す．これより，放射界は，

Ep = −jωµ

4π
e−jkR

R

‹
Si

(
K +

√
ε

µ
Km × ar − η

√
εµ

ar

)
R

r
e−jk(r−R)dS

Hp = −jωε

4π
e−jkR

R

‹
Si

(
Km −

√
µ

ε
K × ar − ηm√

εµ
ar

)
R

r
e−jk(r−R)dS

閉曲面 Si 上の等価波源を電界 E および磁界H を用いて，

K = n × H (2.127)
Km = −(n × E) (2.128)
η = ε(n · E) (2.129)
ηm = µ(n · H) (2.130)

とおくと，閉曲面 Si 上の電磁界 E，H を用いて表せば，次のようになる．

Ep = −jωµ

4π
e−jkR

R

‹
Si

[
(n × H) +

√
ε

µ
(−n × E) × ar − ε(n · E)

√
εµ

ar

]
R

r
ejψ1dS

= −jωµ

4π
e−jkR

R

‹
Si

[
(n × H) −

√
ε

µ
{(n × E) × ar − (n · E)ar}

]
R

r
ejψ1dS

= jk

4π
e−jkR

R

‹
Si

[
−
√
µ

ε
(n × H) + (n × E) × ar + (n · E)ar

]
R

r
ejψ1dS (2.131)

ただし，

ψ1 ≡ −k(r −R) (2.132)

ωµ = ω
√
εµ

√
µ

ε
= k

√
µ

ε
(2.133)

同様にして，

Hp = jk

4π
e−jkR

R

‹
Si

[√
ε

µ
(n × E) + (n × H) × ar + (n · H)ar

]
R

r
ejψ1dS

ただし，

ωε = ω
√
εµ

√
ε

µ
= k

√
ε

µ
(2.134)

2.6.2 面電磁流源による遠方界領域の放射電磁界

遠方界領域において，R/r ' 1，ar ' a
R
と近似すると，

Ep ' jk

4π
e−jkR

R

‹
Si

[
−
√
µ

ε
(n × H) + (n × E) × a

R
+ (n · E)a

R

]
ejψ1dS

Hp ' jk

4π
e−jkR

R

‹
Si

[√
ε

µ
(n × E) + (n × H) × a

R
+ (n · H)a

R

]
ejψ1dS
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このような遠方の放射電磁界は，TEM波で表されるので，a
R
成分は存在しない．ここで，

ベクトル公式

a × (b × c) = (a · c)b − (a · b)c (2.135)

を用いれば，

a
R

× (a
R

× K) = (a
R

· K)a
R

− (a
R

· a
R
)K

= (a
R

· K)a
R

− K (2.136)

より，

K = (a
R

· K)a
R

− a
R

× (a
R

× K) (2.137)

これにK = n × H を代入して，

n × H = {a
R

· (n × H)}a
R

− a
R

× {a
R

× (n × H)} (2.138)

したがって，電界 Ep は次のようになる．

Ep = jk

4π
e−jkR

R

‹
Si

[
−
√
µ

ε
{a

R
· (n × H)}a

R

+
√
µ

ε
a

R
× {a

R
× (n × H)} + (n × E) × a

R
+ (n · E)a

R

]
ejψ1dS (2.139)

ここで，観測点 P の座標を (R,Θ,Φ)とおく．電界 Ep は a
R
成分をもたないから，

Ep = EΘaΘ + EΦaΦ

' jk

4π
e−jkR

R

‹
Si

[√
µ

ε
a

R
× {a

R
× (n × H)} + (n × E) × a

R

]
ejψ1dS

= −jk
4πRe

−jkRa
R

×
‹
Si

[
(n × E) −

√
µ

ε
{a

R
× (n × H)}

]
ejψ1dS (2.140)

ただし，

ψ1 ≡ −k(r −R) (2.141)

同様にして，磁界Hp は次のようになる．

Hp = HΘaΘ +HΦaΦ

' −jk
4πRe

−jkRa
R

×
‹
Si

[
(n × H) +

√
ε

µ
{a

R
× (n × E)}

]
ejψ1dS (2.142)
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2.7 境界線上の連続条件

有限曲面上に分布している 2次波源の満たすべき連続条件について説明する*5．

2.7.1 電荷の保存則（連続の式）

電流密度を J，電荷密度を ρとすると，電荷の保存則は，

∇ · J = −jωρ (2.143)

微小な領域において体積積分して，ガウスの発散定理より，
˚

∇ · JdV =
‹

J · dS = −jω
˚

ρdV (2.144)

面 S 上の面電流密度を Js，面電荷密度を ρs とすると，

∇s · Js = −jωρs (2.145)

ただし，∇s は面 S 上の 2 次元微分演算子を示す．微小な面上の領域において面積積分し
て，2次元のガウスの発散定理より，

¨
∇s · JsdS =

˛
Js · nsd` = −jω

¨
ρsdS (2.146)

2.7.2 面電流分布の不連続

面 S 上において領域 1,2が接している境界線上周辺に面積積分の積分範囲をとる．いま，
境界線に沿う微小長さを dl，境界線に垂直な微小幅を hとおくと，(

J (2)
s − J (1)

s

)
· n1dl = − lim

h→0
jωρshdl = −jωσdl (2.147)

ただし，n1 は面 S 上の領域 1から 2に向く法線ベクトル，σ は境界線上の線電荷密度を示
し，σ ≡ lim

h→0
hρs．また，J (1)

s ，J (2)
s は，領域 1,2の境界線での等価的な面電流密度を各々

示し，面 S 上の磁界をH1，H2 とおくと，

J (i)
s = n × Hi (i = 1, 2) (2.148)

*5 Julius Adams Stratton, ”Electromagnetic Theory,” 8.16. Discontinuous Surface Distributions, p.468,
McGraw-Hill, New York (1941), Wiley-IEEE Press (2007), ISBN-13: 978-0470131534, Kindle Edition
(2013).

80



境界線に沿う単位ベクトルを τ とおき，τ = n × n1 とすると，不連続な面電流分布に対す
る境界条件の式が得られる．(

J (2)
s − J (1)

s

)
· n1 =

(
n × H2 − n × H1

)
· n1 = (n1 × n) · (H2 − H1)

= −τ · (H2 − H1) = τ · (H1 − H2)
= −jωσ (2.149)

2.7.3 線電荷，線磁荷の周回積分による電磁界

領域 1を閉じていない面と考え，境界線上の領域 1の面上の磁界をH とし（H1 = H，
H2 = 0），

τ · H1 = τ · H = −jωσ (2.150)

よって，

σ = −τ · H

jω
(2.151)

領域 1の周囲の線電荷密度 σ による電界 EC は，面電荷のみがある場合を考え，

EC = 1
4π

˛
C

σ

ε
∇ψds = − 1

4πjωε

˛
C

∇ψ(τ · H)ds (2.152)

領域 1の電界を E とし（E1 = E，E2 = 0），双対性より，境界線上の線磁荷密度 σm は，

σm = τ · E

jω
(2.153)

この線磁荷による磁界HC は，

HC = 1
4π

˛
C

σm
µ

∇ψds = 1
4πjωµ

˛
C

∇ψ(τ · E)ds (2.154)

2.8 開口面法

有限曲面上に分布している 2 次波源によって放射が生じているといとき，その面上の電
磁界分布を開口面分布（aperture-field distribution）といい，ここでは，開口面分布から電
磁界を求める詳細な式の導出を行い説明していく*6．

*6 Samuel Silver, ”Microwave Antenna Theory and Design,” 5.11. The Aperture-field Method, McGraw
Hill (1949), IEE, reprint (1984), ISBN-13: 978-0863410178.
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2.8.1 有限の開口面分布による電磁界の積分表示式

開口面分布の面積分の項に加えて，開口面の内部と外部とで連続の式を満足するように開
口面の周囲の線電荷・線磁荷の周回積分の項を加え，開口面分布によって生じる電界 Ep，
磁界Hp は次式によって求めることができる

Ep = − 1
4πjωε

˛
C

∇ψ(τ · H)ds

+ 1
4π

¨
A

{−jωµ(n × H)ψ + (n × E) × ∇ψ + (n · E)∇ψ} dS (2.155)

Hp = 1
4πjωµ

˛
C

∇ψ(τ · E)ds

+ 1
4π

¨
A

{−jωε(n × E)ψ + (n × H) × ∇ψ + (n · H)∇ψ} dS (2.156)

式 (2.155)の周回積分の項について，直角座標系 (x1, x2, x3)を考え，xi (i = 1, 2, 3)方向の
単位ベクトルを ii とすると，

˛
C

∇ψ(τ · H)ds =
˛
C

( 3∑
i=1

∂ψ

∂xi
ii

)
(τ · H)ds =

3∑
i=1

ii

˛
C

∂ψ

∂xi
H · τds (2.157)

ただし，τ は周回積分路に沿う方向の単位ベクトルを示す．上式の周回積分は，次のように
ストークスの定理より，周回積分路 C に囲まれた面 Aの面積分に変換できる．

˛
C

∂ψ

∂xi
H · τds =

¨
A

{
∇ ×

(
∂ψ

∂xi
H

)}
· ndS (2.158)

上式右辺の被積分関数は，{
∇ ×

(
∂ψ

∂xi
H

)}
· n =

{(
∇ ∂ψ

∂xi

)
× H + ∂ψ

∂xi
(∇ × H)

}
· n

=
{(

∇ ∂ψ

∂xi

)
× H

}
· n + ∂ψ

∂xi

(
∇ × H

)
· n

= (H × n) ·
(

∇ ∂ψ

∂xi

)
+ ∂ψ

∂xi

(
jωεE

)
· n

= −(n × H) ·
(

∇ ∂ψ

∂xi

)
+ jωε

∂ψ

∂xi

(
n · E

)
(2.159)

電流源 J0 = 0，導電率 σ = 0として，

∇ × H = (jωε+ σ)E + J0 = jωεE (2.160)
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よって，周回積分項は，
˛
C

∇ψ(τ · H)ds =
3∑
i=1

ii

˛
C

∂ψ

∂xi
H · τds =

3∑
i=1

ii

¨
A

{
∇ ×

(
∂ψ

∂xi
H

)}
· ndS

=
3∑
i=1

ii

¨
A

{
jωε

∂ψ

∂xi

(
n · E

)
− (n × H) ·

(
∇ ∂ψ

∂xi

)}
dS

=
¨
A

[
jωε

(
n · E

) 3∑
i=1

ii
∂ψ

∂xi
−

3∑
i=1

ii

{
(n × H) ·

(
∇ ∂ψ

∂xi

)}]
dS

=
¨
A

{
jωε

(
n · E

)
∇ψ − (n × H) · ∇(∇ψ)

}
dS (2.161)

ここで，

∇ψ =
3∑
i=1

ii
∂ψ

∂xi
(2.162)

2.8.2 ベクトルの勾配

ベクトル関数 F の勾配（gradient）∇F は，

∇F = ∇

 3∑
j=1

Fjij

 =
 3∑
j=1

∇Fj

 ij =
3∑
j=1

(
∂Fj
∂x1

i1 + ∂Fj
∂x2

i2 + ∂Fj
∂x3

i3

)
ij

=
3∑
j=1

( 3∑
i=1

∂Fj
∂xi

ii

)
ij =

3∑
i=1

3∑
j=1

∂Fj
∂xi

iiij (2.163)

となり，ダイアディック関数で表される．これより，

F =
3∑
j=1

Fjij = ∇ψ =
3∑
j=1

∂ψ

∂xj
ij (2.164)

とおくと，スカラ関数 ψ の勾配の勾配 ∇(∇ψ)は，

∇(∇ψ) =
3∑
i=1

3∑
j=1

∂2ψ

∂xi∂xj
iiij (2.165)

いま，

J = n × H , ψ′
j = ∂ψ

∂xj
(2.166)
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とおいて，周回積分の第 2項の被積分関数を計算していくと，

3∑
j=1

ij

{
(n × H) ·

(
∇ ∂ψ

∂xj

)}
=

3∑
j=1

(J · ∇ψ′
j)ij =

3∑
j=1

( 3∑
i=1

Ji
∂ψ′

j

∂xi

)
ij

=
3∑
i=1

Ji
∂

∂xi

 3∑
j=1

ψ′
jij

 =
3∑
i=1

Ji
∂

∂xi

 3∑
j=1

∂ψ

∂xj
ij


= J ·

 3∑
i=1

3∑
j=1

∂2ψ

∂xi∂xj
iiij


= J · ∇(∇ψ) = (n × H) · ∇(∇ψ) (2.167)

よって，EC は，

EC = − 1
4πjωε

˛
C

∇ψ(τ · H)ds

= 1
4π

¨
A

{
−(n · E)∇ψ + 1

jωε
(n × H) · ∇(∇ψ)

}
dS (2.168)

一方，面積分で求められる電界 ES は，

ES = 1
4π

¨
A

{−jωµ(n × H)ψ + (n × E) × ∇ψ + (n · E)∇ψ} dS

領域 1の面 Aの開口面分布によって生じる電界 Ep は，両者の和より，

Ep = ES + EC

= 1
4π

¨
A

{
−jωµ(n × H)ψ + 1

jωε
(n × H) · ∇(∇ψ) + (n × E) × ∇ψ

}
dS

(2.169)

2.8.3 開口面法（任意の曲面）

開口面の電磁界をEa，Ha，観測点 P での電磁界をEp，Hp とすると，k2 = ω2εµより，

Ep = 1
4πjωε

¨
A

{
k2(n × Ha)ψ + (n × Ha) · ∇(∇ψ) + jωε(n × Ea) × ∇ψ

}
dS

(2.170)

同様にして，磁界Hp は（導出省略），

Hp = − 1
4πjωµ

¨
A

{
k2(n × Ea)ψ + (n × Ea) · ∇(∇ψ) − jωµ(n × Ha) × ∇ψ

}
dS

(2.171)

このような方法を開口面法（aperture-field method）という．開口面のある点から観測点 P

までの距離および単位ベクトルを r，ar とすると，開口面の座標に関わる微分演算子 ∇の
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勾配は，

∇ψ = ∇
(
e−jkr

r

)
= (−ar)

(
−jk − 1

r

)
e−jkr

r
= jk

(
1 + 1

jkr

)
ψar (2.172)

∇(∇ψ) =
3∑
i=1

3∑
j=1

∂2ψ

∂xi∂xj
iiij (2.173)

放射波（1/r に比例する項）を求めることにすると，kr � 1とみなして次のように近似で
きる．

∇ψ ' jkψar (2.174)
∇(∇ψ) ' (jk)2ψarar (2.175)

これより，放射電界 Ep は次のようになる．

Ep ' 1
4πjωε

¨
A

{
k2(n × Ha) + (n × Ha) · (−k2)arar + jωε(n × Ea) × jkar

}
ψdS

(2.176)

ベクトル公式 a × (b × c) = (a · c)b − (a · b)c を用いれば，

ar × (ar × J) = (ar · J)ar − (ar · ar)J = (ar · J)ar − J

J = (ar · J)ar − ar × (ar × J) (2.177)

上式に J = n × Ha を代入して，

n × Ha = {ar · (n × Ha)}ar − ar × {ar × (n × Ha)}
∴ n × Ha − {(n × Ha) · ar}ar = −ar × {ar × (n × Ha)} (2.178)

したがって，

Ep = jk

4π

¨
A

[√
µ

ε
ar × {ar × (n × Ha)} − ar × (n × Ea)

]
ψdS (2.179)

座標原点から観測点までの距離をRとし，kR � 1のとき，次のように近似できる（R ' r）．

Ep = −jk
4π

e−jkR

R

¨
A

(
ar ×

[
(n × Ea) −

√
µ

ε

{
ar × (n × Ha)

}])
· R
r
e−jk(r−R)dS

(2.180)

同様にして，磁界H は，

Hp = −jk
4π

e−jkR

R

¨
A

(
ar ×

[
(n × Ha) +

√
ε

µ

{
ar × (n × Ea)

}])
· R
r
e−jk(r−R)dS

(2.181)
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さらに，aR ' ar のとき，

Ep = jk

4π
e−jkR

R
aR ×

¨
A

[√
µ

ε
{aR × (n × Ha)} + (Ea × n)

]
· e−jk(r−R)dS (2.182)

開口面の電界 Ea，磁界Ha から，等価的な 2次波源

J ≡ n × Ha (2.183)
M ≡ Ea × n (2.184)

を定義すれば，

Ep = jk

4π
e−jkR

R
aR ×

¨
A

(√
µ

ε
aR × J + M

)
e−jk(r−R)dS

= jkG0aR ×
¨
A

(
aR × Z0J + M

)
e−jk(r−R)dS (2.185)

任意電磁流分布による放射電磁界の積分表示式と同様の結果となる．ここで，

G0 = e−jkR

4πR , Z0 =
√
µ

ε
(2.186)

2.9 平面開口面分布と放射界の関係

2.9.1 平面開口面分布

いま，2次波源 Ea，Ha が，局所的な平面波とみなせるとき，

Ha =
√
ε

µ
(s × Ea) (2.187)

電界 Ep の式に見られるHa の項は，次のように Ea を用いて表すことができる．√
µ

ε
(n × Ha) = n × (s × Ea)

= (n · Ea)s − (n · s)Ea (2.188)

これより，電界 Ep は 2次波源の磁界Ha を消去して次のようになる．

Ep = −jk
4πRe

−jkR a
R

×
¨
Si

[n × Ea − a
R

× {(n · Ea)s − (n · s)Ea}] ejψ1dS

= −jk
4πRe

−jkR a
R

×
¨
Si

[{n + (n · s)a
R
} × Ea − (n · Ea)aR

× s] ejψ1dS

(2.189)
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ここで，

ψ1 = −r +R (2.190)

ただし，k は自由空間波数，Rは原点から観測点までの距離，r は開口面から観測点までの
距離，a

R
は観測方向の単位ベクトル，E は開口面 Si 上の電界，nは開口面上の法線ベク

トル，sは電磁界に直交する単位ベクトルを示す．

2.9.2 平面開口面分布に対する開口面法

積分領域である曲面を波面上にとれば，

s = n, n · Ea = 0 (2.191)

が成り立ち，このとき，放射電界 Ep は次のようになる．

Ep = −jk
4πRe

−jkR a
R

×
¨
A

{(n + a
R
) × Ea} ejψ1dS (2.192)

ただし，Aは開口面（aperture）を示し，Ea を通常，開口面分布という．さらに，波面が
平面の場合（nは積分変数に依らない），放射電界 Ep は次のようになる．

Ep = −jk
4πRe

−jkR a
R

× {(n + a
R
) × N} (2.193)

ただし，

N =
¨
A

Eae
jψ1dS (2.194)

直角座標系 (x, y, z)において，n = az のとき，

N = (N · ax)ax + (N · ay)ay =
¨
A

Eae
jψ1dS (2.195)

ただし，N · az = 0．ここで，ax，ay，az は，x，y，z に沿う単位ベクトルを各々示す．
図に示す球座標系 (R,Θ,Φ)において，Θ，Φに沿う単位ベクトル aΘ，aΦ は，

aΘ = cos Θ(cos Φax + sin Φay) − sin Θaz (2.196)
aΦ = − sin Φax + cos Φay (2.197)
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ax

ay

az

x 

y 

z Ea 
0 

RaR

rar

n = az

Θ Φ

aR

aR

aΘ
aΘ

aΦ

aΦ aη

aξ

(R, Θ, Φ) Φ
ρ

図 2.3. 開口面法に関わる座標系の定義

2.9.3 主偏波成分，交差偏波成分

球座標系 (R,Θ,Φ)の単位ベクトル aR，aΘ，aΦ は，

aR = sin Θ
(

cos Φax + sin Φay
)

+ cos Θaz (2.198)

aΘ = cos Θ
(

cos Φax + sin Φay
)

− sin Θaz (2.199)
aΦ = − sin Φax + cos Φay (2.200)

ここで，

aR = aΘ × aΦ (2.201)
aΘ = aΦ × aR (2.202)
aΦ = aR × aΘ (2.203)

逆に，

ax = cos Φ
(

sin ΘaR + cos ΘaΘ
)

− sin ΦaΦ (2.204)

ay = sin Φ
(

sin ΘaR + cos ΘaΘ
)

+ cos ΦaΦ (2.205)
az = cos ΘaR − sin ΘaΘ (2.206)

これより，

aR × ax = aR ×
{

cos Φ
(

sin ΘaR + cos ΘaΘ
)

− sin ΦaΦ
}

= cos Φ cos ΘaΦ + sin ΦaΘ (2.207)

aR × ay = aR ×
{

sin Φ
(

sin ΘaR + cos ΘaΘ
)

+ cos ΦaΦ
}

= sin Φ cos ΘaΦ − cos ΦaΘ (2.208)
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式 (2.215)の左辺は，

aR ×
{
(az + aR) × N

}
= aR ×

{
(az + aR) × (Nxax +Nyay)

}
= aR ×

{
Nx(ay + aR × ax) +Ny(−ax + aR × ay)

}
= Nx

{
aR × ay + aR × (cos Φ cos ΘaΦ + sin ΦaΘ)

}
+Ny

{
− aR × ax + aR × (sin Φ cos ΘaΦ − cos ΦaΘ)

}
= Nx

{
(sin Φ cos ΘaΦ − cos ΦaΘ) + (− cos Φ cos ΘaΘ + sin ΦaΦ)

}
+Ny

{
− (cos Φ cos ΘaΦ + sin ΦaΘ) + (− sin Φ cos ΘaΘ − cos ΦaΦ)

}
= Nx

{
− cos Φ(1 + cos Θ)aΘ + sin Φ(cos Θ + 1)aΦ

}
+Ny

{
− sin Φ(1 + cos Θ)aΘ − cos Φ(cos Θ + 1)aΦ

}
= −(1 + cos Θ)

{
Nx(cos ΦaΘ − sin Φaφ) +Ny(sin ΦaΘ + cos Φaφ)

}
(2.209)

新たに単位ベクトルを，

aξ ≡ cos ΦaΘ − sin ΦaΦ (2.210)
aη ≡ sin ΦaΘ + cos ΦaΦ (2.211)

とおくと，

aR = aξ × aη (2.212)
aξ = aη × aR (2.213)
aη = aR × aξ (2.214)

これより，式 (2.209)は次のようになる．

aR ×
{
(az + aR) × N

}
= −(1 + cos Θ)

(
Nxaξ +Nyaη

)
= −(1 + cos Θ)

{
(N · ax)aξ + (N · ay)aη

}
(2.215)

よって m開口面分布 Ea(≡ Exax + Eyay)による放射電界 Ep は次のようになる．

Ep = jk

4πRe
−jkR(1 + cos Θ){(N · ax)aξ + (N · ay)aη}

= j
1 + cos Θ

2λ · e
−jkR

R
(Nxaξ +Nyaη)

≡ Eξaξ + Eηaη (2.216)

ここで，

Nx = N · ax =
¨
A

(Ea · ax)ejψ1dS =
¨
A

Exe
jψ1dS (2.217)

Ny = N · ay =
¨
A

(Ea · ay)ejψ1dS =
¨
A

Eye
jψ1dS (2.218)
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ただし，ψ1 ≡ −k(r −R)．したがって，電界ベクトル Ep の直交する成分 Eξ，Eη は，

E(ξ
η

)(R,Θ,Φ) = j
1 + cos Θ

2λ · e
−jkR

R

¨
A

E(x
y

)(x, y)e−jk(r−R)dS (2.219)

これより，開口面電界分布Ea が x成分のみ (Ea · ay = 0)の場合，放射電界Ep は aξ 方向
成分のみ (Ep · aη = 0)で表され，逆に開口面電界分布 Ea が y 成分のみ (Ea · ax = 0)の
場合，放射電界Ep は aη 方向成分のみ (Ep · aξ = 0)で表される．このようにして各々の成
分は独立な式で扱うことができ，開口面分布のスカラ成分に対して放射特性を解析すれば
よい．

2.10 フラウンホーファ領域とフレネル領域

2.10.1 フラウンホーファ領域放射電界

観測点が十分遠方の場合，位相項の (r −R)を次のように近似する．

r −R ' −ρ (a
R

· aρ) (2.220)

ここで，

a
R

= sin Θ (cos Φax + sin Φay) + cos Θaz (2.221)
aρ = cosϕax + sinϕay (2.222)

ただし，a
R
は観測点を表す極座標系 (R,Θ,Φ) の R方向に沿う単位ベクトル，aρ は開口面

を表す円筒座標系 (ρ, ϕ, z) の ρ方向に沿う単位ベクトル，ax，ay，az は直角座標系 (x, y, z)
の直交単位ベクトルを示す．波数ベクトル kより，横断面内波数ベクトル kt を

k = ka
R

= kxax + kyay + kzaz = kt + kzaz (2.223)

で定義すると，

kρ(a
R

· aρ) = (ka
R
) · (ρaρ) = k · ρ = kt · ρ = kxx+ kyy (2.224)

放射電界 Ep と開口面分布 Ea との関係は，逆フーリエ変換（inverse Fourier transform）に
よって，次のように表される．

Ep = j
1 + cos Θ

2λ · e
−jkR

R
g(kx, ky) (2.225)

g(kx, ky) =
¨ ∞

−∞
u(x, y)ejkt·ρdxdy (2.226)

u(x, y) =
{
Ea(x, y) (inside A)
0 (outside A) (2.227)
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ただし，kt は横断面内波数ベクトルを示し，次のように定義される．

kt = kxax + kyay (2.228)

ここで，

kx = k sin Θ cos Φ (2.229)
ky = k sin Θ sin Φ (2.230)

さらに，フーリエ変換より，

u(x, y) = 1
(2π)2

¨ ∞

−∞
g(kx, ky)e−jkt·ρdkxdky (2.231)

が成り立ち，放射特性を表す g(kx, ky)がわかれば，逆に開口面分布を表す u(x, y)が得られ
ることになる．このような連続フーリエ変換対は，実際の測定データを基にした計測におい
ては，通常，離散フーリエ変換対（discrete Fourier transform pair）として扱われるので，
高速フーリエ変換（fast Fourier transform: FFT）で計算できる．

2.10.2 フレネル領域放射電界

近似の次数を上げて，次のように展開する．

r −R ' −ρ (a
R

· aρ) + ρ2

2R (2.232)

これより，

e−jk(r−R) ' ejkt·ρe−jk ρ2
2R (2.233)

と近似すると，放射電界 Ep は次のようになり，このような領域をフレネル領域（Fresnel
region）という．

Ep = j
1 + cos Θ

2λ · e
−jkR

R
gr(kx, ky, R) (2.234)

gr(kx, ky, R) =
¨ ∞

−∞
ur(x, y, R)ejkt·ρdxdy (2.235)

ur(x, y, R) =

 Ea(x, y)e−jk ρ2
2R (inside A)

0 (outside A)
(2.236)

このときも開口面分布はフーリエ変換によって求めることができ，

ur(x, y, R) = 1
(2π)2

¨ ∞

−∞
gr(kx, ky, R)e−jkt·ρdkxdky (2.237)

91



この場合も離散フーリエ変換対によって表され，高速フーリエ変換を用いて計算できる．フ
レネル領域の距離 Rの下限については，はっきりとした定義がないが，一つの目安として，
無視した位相の第３項が λ/16以下として，

(D/2)4

8R3 <
λ

16 (2.238)

の条件より求めると，

2D2

λ
> R >

D

2

(
D

λ

)1/3
(2.239)

を満たす範囲となる*7．

*7 R.C.Hansen, ”Microwave Scanning Antennas,” Peninsula Pub. (1986), ISBN-13: 978-0932146120.
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CHAPTER 3

スカラー・グリーン関数

　電磁波工学における境界値問題の解法として，グリーン関数法を取り上げて解説する．ま
ず，ベクトルポテンシャルに関連するスカラー・グリーン関数について，Sturm-Liouville
型方程式に対する固有関数展開法および区間分割法を用いて，グリーン関数の導出過程を示
す．さらに，これらの手法で得られたグリーン関数が複素積分と密接に関係していることに
言及し，一次元グリーン関数を出発点として，二次元および三次元グリーン関数を構築する
手法にも触れる，これにより，グリーン関数の理論的枠組みから実際の応用に至るまでを体
系的に説明する．

3.1 Sturm-Liouville 方程式

Sturm-Liouville 方程式に関するスカラー・グリーン関数について，区間を分割して求め
る方法，および固有関数展開して求める方法について示し，さらに複素積分を用いて求める
方法についても取り上げ説明する*1．s

3.1.1 固有値，固有関数

電磁波工学における境界値問題は，次の Sturm-Liouville 方程式（同次形）に関係する問
題が多い．

d

dx
p(x)dψ(x)

dx
+ [q(x) + λσ(x)]ψ(x) = 0 (0 ≤ x ≤ a) (3.1)

*1 Robert E. Collin, “Field Theory of Guided Waves,” 2nd ed., IEEE Press (1991), ISBN-13: 978-
0879422370.
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ただし，λは定数，p，σ は通常，正にとり，xに関する連続関数を示す．境界条件の例とし
ては，次のいずれかが考えられる．

• ψ = 0 at x = 0, a
• ∂ψ

∂x
= 0 at x = 0, a

• ψ +K
∂ψ

∂x
= 0 at x = 0, a（ただし，K は定数）

上の境界条件のいずれかが与えられれば，Sturm-Liouville 方程式を満たす固有値
（eigenvalues）λ = λn，固有関数（eigenfunctions）ψ = ψn を無限個求めることができ
る．いま，2つの固有関数を ψn，ψm（固有値は各々 λn，λm）とおくと，

d

dx
p
dψn
dx

+ [q + λnσ]ψn = 0 (3.2)

d

dx
p
dψm
dx

+ [q + λmσ]ψm = 0 (3.3)

が成り立ち，上の第 1式に ψm，第 2式に ψn を各々乗じて，辺々引くと，

ψm
d

dx
p
dψn
dx

− ψn
d

dx
p
dψm
dx

+ (λn − λm)σψnψm = 0 (3.4)

そして，両辺を xについて区間 [0, a]にわたって積分すると，
ˆ a

0

(
ψn

d

dx
p
dψm
dx

− ψm
d

dx
p
dψn
dx

)
dx =

ˆ a

0
(λn − λm)σψnψmdx (3.5)

上式の左辺は，次のように部分積分できる．[
ψnp

dψm
dx

− ψmp
dψn
dx

]a
0

−
ˆ a

0

(
dψn
dx

p
dψm
dx

− dψm
dx

p
dψn
dx

)
dx

=
[
p

(
ψn
dψm
dx

− ψm
dψn
dx

)]a
0

(3.6)

よって，[
p

(
ψn
dψm
dx

− ψm
dψn
dx

)]a
0

= (λn − λm)
ˆ a

0
σψnψmdx (3.7)

左辺については，さらに境界条件を適用し，次のようになる．

• ψn = ψm = 0 at x = 0, a の場合，（左辺）= 0
• ∂ψn

∂x
= ∂ψm

∂x
= 0 at x = 0, aの場合，（左辺）= 0
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• ψn +K
∂ψn
∂x

= ψm +K
∂ψm
∂x

= 0 at x = 0, a の場合，

ψn
dψm
dx

− ψm
dψn
dx

= ψn
dψm
dx

− ψm
dψn
dx

+K
dψn
dx

dψm
dx

−K
dψn
dx

dψm
dx

=
(
ψn +K

∂ψn
∂x

)
dψm
dx

−
(
ψm +K

∂ψm
∂x

)
dψn
dx

(3.8)

と変形できるので，（左辺）= 0となる．

したがって，上のいずれの境界条件でも，次式が成り立つ．

0 = (λn − λm)
ˆ a

0
σψnψmdx (3.9)

3.1.2 直交性

　 λn 6= λm のとき，
ˆ a

0
σψnψmdx = 0 (3.10)

上式は，σ を荷重関数とみなすと，ψn，ψm が 0 ≤ x ≤ aにおいて直交性をもつことを表し
ている．そして，次の正規化条件を満足しているものとする．

ˆ a

0
σ(x)ψn(x)ψm(x)dx =

{
1 (n = m)
0 (n 6= m) = δnm (3.11)

ただし，δnmはクロネッカデルタの記号を示す．このような正規化直交関数 ψnを用いれば，
関数 h(x)を次のように展開することができる．

h(x) =
∞∑
n=1

anψn(x) (3.12)

いま，h(x)の式の両辺に σ(x)ψm(x)を乗じ，区間 [0, a]で xについて積分すると，
ˆ a

0
h(x)σ(x)ψm(x)dx =

ˆ a

0

( ∞∑
n=1

anψn(x)
)
σ(x)ψm(x)dx

=
∞∑
n=1

an

ˆ a

0
σ(x)ψn(x)ψm(x)dx

=
∞∑
n=1

anδnm = am (3.13)

よって，an は (x → x′)，

an =
ˆ a

0
h(x′)σ(x′)ψn(x′)dx′ (3.14)
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これより，関数 h(x)は，

h(x) =
∞∑
n=1

(ˆ a

0
h(x′)σ(x′)ψn(x′)dx′

)
ψn(x)

=
ˆ a

0
h(x′)

[ ∞∑
n=1

σ(x′)ψn(x′)ψn(x)
]
dx′ (3.15)

ところで，デルタ関数 δ(x− x′)を用いれば次式が成り立つ．

h(x) =
ˆ a

0
h(x′)δ(x− x′)dx′ (3.16)

両者の h(x)に関する式を比較すると，次の関係（オペレータ）が得られる．

δ(x− x′) =
∞∑
n=1

σ(x′)ψn(x′)ψn(x) (3.17)

3.2 グリーン関数の求め方

グリーン関数は，線形システムにおける単位強度の点波源による応答を表すもので，点
x′ の波源はディラックのデルタ関数 δ(x− x′)によって表される．つまり，Sturm-Liouville
方程式に対するグリーン関数 G(x, x′)は，デルタ関数を用いた次式を満足する．

d

dx
p
dG

dx
+ [q + λσ]G = −δ(x− x′) (3.18)

3.2.1 グリーン関数を求める方法 I（固有関数による展開）

まず，固有値 λn，固有関数 ψn より，

d

dx
p
dψn
dx

+ [q + λnσ]ψn = 0 (3.19)

グリーン関数 Gを固有関数 ψn を用いて展開すると，

G(x, x′) =
∞∑
n=1

anψn(x) (3.20)

このように展開したグリーン関数 Gも，ψnと同じ境界条件を満足する．この Gを式 (3.18)
に代入すると，

d

dx
p
d

dx

( ∞∑
n=1

anψn(x)
)

+ [q + λσ]
( ∞∑
n=1

anψn(x)
)

= −δ(x− x′)

∞∑
n=1

an

(
d

dx
p
dψn
dx

+ [q + λσ]ψn
)

= −δ(x− x′) (3.21)
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ここで，

d

dx
p
dψn
dx

+ qψn = −λnσψn (3.22)

より，
∞∑
n=1

an(λ− λn)σψn = −δ(x− x′) (3.23)

上式の両辺に ψm(x)を乗じ，[0, a]にわたって積分すると，
ˆ a

0

∞∑
n=1

an(λ− λn)σ(x)ψn(x)ψm(x)dx = −
ˆ a

0
δ(x− x′)ψm(x)dx

∞∑
n=1

an(λ− λn)
ˆ a

0
σ(x)ψn(x)ψm(x)dx = −ψm(x′) (3.24)

固有関数の正規化直交条件より，
∞∑
n=1

an(λ− λn)δnm = am(λ− λm) = −ψm(x′) (3.25)

よって，係数 an は次のようになる．

an = −ψn(x′)
λ− λn

(3.26)

これにより，

G(x, x′) =
∞∑
n=1

anψn(x) =
∞∑
n=1

(
−ψn(x′)
λ− λn

)
ψn(x) (3.27)

したがって，グリーン関数 G(x, x′)は次のようになる．

G(x, x′) = −
∞∑
n=1

ψn(x)ψn(x′)
λ− λn

(3.28)

3.2.2 グリーン関数を求める方法 II（区間の分割）

点波源以外のところ，つまり x 6= x′ では，グリーン関数 Gの満たすべき式は，単なる同
次形となって次のようになる．

d

dx
p
dG

dx
+ [q + λσ]G = 0 (x 6= x′) (3.29)

このとき，Gを xの区間 [0, a]において次のように定義する．

G =
{
AΦ1(x) (x ≤ x′)
BΦ2(x) (x ≥ x′) (3.30)
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ただし，x = x′ では Gは連続ゆえ，

AΦ1(x′) = BΦ2(x′) (3.31)

一方，x = x′ 近傍では，

d

dx
p
dG

dx
+ [q + λσ]G = −δ(x− x′) (3.32)

が成り立つ．そこで，両辺を xについて区間 [x′ − τ, x′ + τ ]で積分し，その後，τ → 0の極
限をとると，

lim
τ→0

ˆ x′+τ

x′−τ

(
d

dx
p
dG

dx
+ [q + λσ]G

)
dx = lim

τ→0

ˆ x′+τ

x′−τ
−δ(x− x′)dx (3.33)

上式の左辺第 1項は，

lim
τ→0

ˆ x′+τ

x′−τ

d

dx
p
dG

dx
dx = lim

τ→0

[
p
dG

dx

]x′+τ

x′−τ
=
[
p
dG

dx

]x′
+

x′
−

= p(x′)
[
dG

dx

]x′
+

x′
−

(3.34)

上式の最後の項は，Gの導関数は x = x′ で不連続，p(x)は x = x′ で連続であることを用
いて求めている．また，左辺第 2項は，q(x)，σ(x)，および G(x)がいずれも x = x′ で連続
ゆえ，

lim
τ→0

ˆ x′+τ

x′−τ
[q(x) + λσ(x)]G(x, x′)dx = 0 (3.35)

一方，右辺は，デルタ関数の性質より，

lim
τ→0

ˆ x′+τ

x′−τ
−δ(x− x′)dx = −1 (3.36)

よって，

p(x′)
[
dG

dx

]x′
+

x′
−

= −1 (3.37)

さらに，先に定義した Gを代入すると，[
dG

dx

]x′
+

x′
−

= dG

dx

∣∣∣∣∣
x′

+

− dG

dx

∣∣∣∣∣
x′

−

= d

dx
(BΦ2(x))

∣∣∣∣∣
x′

+

− d

dx
(AΦ1(x))

∣∣∣∣∣
x′

−

= B
dΦ2

dx

∣∣∣∣∣
x′

+

− A
dΦ1

dx

∣∣∣∣∣
x′

−

= BΦ′
2(x′) − AΦ′

1(x′) (3.38)

よって，

p(x′){BΦ′
2(x′) − AΦ′

1(x′)} = −1 (3.39)
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式 (3.31)と上式を連立させると，係数 A，B は次のようになる（導出省略）．

A = − Φ2(x′)
p(x′) [Φ1(x′)Φ′

2(x′) − Φ′
1(x′)Φ2(x′)] (3.40)

B = A
Φ1(x′)
Φ2(x′) (3.41)

ここで，

W (x′) ≡ Φ1(x′)Φ′
2(x′) − Φ′

1(x′)Φ2(x′) (3.42)

とおくと，

A = − Φ2(x′)
p(x′)W (x′) (3.43)

B = − Φ1(x′)
p(x′)W (x′) (3.44)

これにより，Gは次のようになる．

G(x, x′) =


AΦ1(x) = −Φ1(x)Φ2(x′)

p(x′)W (x′) (0 ≤ x ≤ x′)

BΦ2(x) = −Φ1(x′)Φ2(x)
p(x′)W (x′) (x′ ≤ x ≤ a)

(3.45)

さらに，x′ と xの大きい方を x>，小さい方を x< で表すと G(x, x′)は，次のように一つの
式にまとめて表すことができる．

G(x, x′) = −Φ1(x<)Φ2(x>)
p(x′)W (x′) (3.46)

ここで，上式のW は λの関数であり，λ = λn のときW = 0となり，上式（方法 II）も式
(3.28)（方法 I）と同様に極をもつ．

3.3 境界値問題の解

次の非同次形の方程式の解を求めることを考える．

d

dx
p
dψ

dx
+ [q + λσ]ψ = −f(x) (0 ≤ x ≤ a) (3.47)

ただし，境界条件としては，次のいずれかが与えられているものとする．

• ψ at x = 0, a
• dψ

dx
at x = 0, a

• ψ +K
dψ

dx
at x = 0, a（ただし，K は定数）
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そして，この問題に対するグリーン関数 Gは，次式を満足するものである．
d

dx
p
dG

dx
+ [q + λσ]G = −δ(x− x′) (3.48)

後の計算で都合の良いように，xと x′ を入れ替えると，
d

dx′p(x
′)dψ(x′)

dx′ + [q(x′) + λσ(x′)]ψ(x′) = −f(x′) (3.49)

d

dx′p(x
′)dG(x′, x)

dx′ + [q(x′) + λσ(x′)]G(x′, x) = −δ(x′ − x) (3.50)

上の第 1式に G(x′, x)を乗じ，第 2式に ψ(x′)を乗じて，辺々引いて，[0, a]で x′ について
積分すると，

ˆ a

0

{
G(x′, x) d

dx′

(
p(x′)dψ(x′)

dx′

)
−ψ(x′) d

dx′

(
p(x′)dG(x′, x)

dx′

)}
dx′

=
ˆ a

0
−f(x′)G(x′, x)dx′ +

ˆ a

0
δ(x′ − x)ψ(x′)dx′ (3.51)

上式左辺については部分積分を行い，右辺第 2項についてはデルタ関数の性質より，次式が
得られる．

ψ(x) =
ˆ a

0
G(x′, x)f(x′)dx′ +

[
G(x′, x)

(
p(x′)dψ(x′)

dx′

)
− ψ(x′)

(
p(x′)dG(x′, x)

dx′

)]a
0

+
ˆ a

0

{
dG(x′, x)
dx′

(
p(x′)dψ(x′)

dx′

)
−dψ(x′)

dx′

(
p(x′)dG(x′, x)

dx′

)}
dx′

=
ˆ a

0
G(x′, x)f(x′)dx′ +

[
p(x′)

(
G(x′, x)dψ(x′)

dx′ − ψ(x′)dG(x′, x)
dx′

)]a
0

(3.52)

いま，簡単なケースとして，境界条件が，

• ψ = 0 at x = 0, a
• dψ

dx
= 0 at x = 0, a

• ψ +K
dψ

dx
= 0 at x = 0, a（ただし，K は定数）

のいずれかで与えられている場合，グリーン関数 Gも同じ境界条件とすると，上式の [ ]a0
の項（境界条件に関する項）が 0になり，ψ(x)は次のようになる．

ψ(x) =
ˆ a

0
G(x′, x)f(x′)dx′ (3.53)

また，ψ の境界条件が 0ではなく，ある値をもつ場合も考えてみる．すでに示した３通り
の ψ の境界条件を一般化した形で表すと，次のようになる．

K1ψ +K2
dψ

dx
= K3 at x = 0, a (3.54)

ただし，グリーン関数 Gの境界条件は，上と同様に 0としておく．例えば，
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• K2 = 0のとき，つまり，ψ = K3

K1
(at x = 0, a) が与えられている場合，G = 0 (at

x = 0, a)とする．
• K1 = 0 のとき，つまり，dψ

dx
= K3

K2
(at x = 0, a) が与えられている場合，dG

dx
= 0

(at x = 0, a)とする．
• K1 6= 0，K2 6= 0 のとき，つまり，K3(6= 0) (at x = 0, a) が与えられているとき，
K1G+K2

dG

dx
= 0 (at x = 0, a)とする．

これにより，境界条件の項は次のようになる．[
p(x′)

(
G(x′, x)dψ(x′)

dx′ − ψ(x′)dG(x′, x)
dx′

)]a
0

=
[
p(x′)

{
G(x′, x)
K2

(
K1ψ(x′) +K2

dψ(x′)
dx′

)
−ψ(x′)

K2

(
K1G(x′, x) +K2

dG(x′, x)
dx′

)}]a
0

=
[
p(x′)G(x′, x)

K2
K3

]a
0

= K3

K2

[
p(x′)G(x′, x)

]a
0

(3.55)

したがって，ψ(x)は次のようになる．

ψ(x) =
ˆ a

0
G(x′, x)f(x′)dx′ + K3

K2

[
p(x′)G(x′, x)

]a
0

(3.56)

3.4 グリーン関数の導出例

3.4.1 固有関数

Sturm-Liouville 方程式（同次形）

d

dx
p(x)dψ(x)

dx
+ [q(x) + λσ(x)]ψ(x) = 0 (3.57)

において，p = σ = 1，q = 0 とおいた次の同次方程式を考える．

d2ψ(x)
dx2 + λψ(x) = 0 (3.58)

このとき，境界条件は，

ψ = 0 (at x = 0, a) (3.59)

これを解くため，まず ψ ≡ eαx とおいて，与式に代入すると，

d2

dx2 (eαx) + λeαx =
(
α2 + λ

)
eαx = 0 (3.60)
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これより，特性方程式は，

α2 + λ = 0 (3.61)

よって，

α = ±j
√
λ (3.62)

ここで，sin，cosを選ぶと一般解は次のようになる．

ψ = A sin
√
λx+B cos

√
λx (3.63)

次に，x = 0における境界条件より，

ψ
∣∣∣∣
x=0

= B = 0 (3.64)

また，x = aにおける境界条件より，

ψ
∣∣∣∣
x=a

= A sin
√
λa = 0 (A 6= 0) (3.65)

よって，
√
λa = nπ (n = 1, 2, 3, · · · ) (3.66)

これより，固有値 λn は，

λ =
(
nπ

a

)2
≡ λn (3.67)

また，固有関数は，

sin
√
λnx = sin

(
nπ

a
x
)

(3.68)

さらに，正規化直交条件
ˆ a

0
ψnψmdx = δnm (3.69)

を満足するように係数を決めると，
ˆ a

0
sin2

(
nπ

a
x
)
dx = a

2 (3.70)

より，

ψn(x) =
√

2
a

sin
√
λnx =

√
2
a

sin nπx
a

(3.71)
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3.4.2 固有関数展開によるグリーン関数（方法 I ）

グリーン関数 Gは固有関数展開より次のようになる．

G(x, x′) =
∞∑
n=1

anψn(x) =
∞∑
n=1

an

√
2
a

sin nπx
a

(3.72)

ここで，

ψn(x) =
√

2
a

sin nπx
a
, λn =

(
nπ

a

)2
(3.73)

これより，グリーン関数 G(x, x′)の表示式は次のようになる．

G(x, x′) = −
∞∑
n=1

ψn(x)ψn(x′)
λ− λn

= −
∞∑
n=1

√
2
a

sin nπx
a

√
2
a

sin nπx
′

a

λ−
(
nπ

a

)2 (3.74)

問題

式 (3.74)を導出せよ．

解答

グリーン関数 Gの満たすべき方程式

d2G

dx2 + λG = −δ(x− x′) (3.75)

に，固有関数展開した式を代入すると，

d2

dx2

( ∞∑
n=1

anψn(x)
)

+ λ
∞∑
n=1

anψn(x) =
∞∑
n=1

an

(
d2ψn
dx2 + λψn

)
= −δ(x− x′)

(3.76)

ここで，固有関数 ψn は，

d2ψn
dx2 + λnψn = 0 (3.77)

を満足するので，

d2ψn
dx2 = −λnψn (3.78)

より，
∞∑
n=1

an(λ− λn)ψn = −δ(x− x′) (3.79)
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固有値 λn，および固有関数 ψn を代入すると，

∞∑
n=1

an

{
λ−

(
nπ

a

)2
}√

2
a

sin nπx
a

= −δ(x− x′) (3.80)

上式の両辺に ψm(x)を乗じ，区間 [0, a]にわたって xについて積分すると，

ˆ a

0

√
2
a

sin mπx
a

∞∑
n=1

an

{
λ−

(
nπ

a

)2
}√

2
a

sin nπx
a
dx

= −
ˆ a

0

√
2
a

sin mπx
a

δ(x− x′)dx (3.81)

整理して，

∞∑
n=1

an

{
λ−

(
nπ

a

)2
}ˆ a

0

√
2
a

sin nπx
a

√
2
a

sin mπx
a

dx = −
√

2
a

sin mπx
′

a
(3.82)

固有関数の正規化直交条件より，

∞∑
n=1

an

{
λ−

(
nπ

a

)2
}
δnm = am

{
λ−

(
mπ

a

)2
}

= −
√

2
a

sin mπx
′

a
(3.83)

よって，係数 an は次のようになる．

an =
−
√

2
a

sin nπx
′

a

λ−
(
nπ

a

)2 (3.84)

これをグリーン関数 G(x, x′)の式に代入すれば，式 (3.74)が得られる．

3.4.3 方法 IIによるグリーン関数の導出

方法 II では，2 つの領域 0 ≤ x < x′，x′ < x ≤ a で別々に G を定義する．まず，
0 ≤ x < x′ のとき，

d2G

dx2 + λG = 0 (0 ≤ x < x′) (3.85)

これより，Gは，

G = A1 sin
√
λx+B1 cos

√
λx (3.86)

この領域の境界条件（G = 0 at x = 0）より，

G

∣∣∣∣
x=0

= B1 = 0 (3.87)
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よって，

G = A1 sin
√
λx ≡ A1Φ1(x) (3.88)

ただし，

Φ1(x) = sin
√
λx (3.89)

また，x′ < x ≤ aのとき，

d2G

dx2 + λG = 0 (x′ < x ≤ a) (3.90)

これより，Gは，

G = A2 sin
√
λ(a− x) +B2 cos

√
λ(a− x) (3.91)

この領域の境界条件（G = 0 at x = a）より，

G
∣∣∣∣
x=a

= B2 = 0 (3.92)

よって，

G = A2 sin
√
λ(a− x) ≡ A2Φ2(x) (3.93)

ただし，

Φ2(x) = sin
√
λ(a− x) (3.94)

そして，導関数 Φ′
1(x)，Φ′

2(x)は，

Φ′
1(x) = d

dx

(
sin

√
λx
)

=
√
λ cos

√
λx (3.95)

Φ′
2(x) = d

dx

(
sin

√
λ(a− x)

)
= −

√
λ cos

√
λ(a− x) (3.96)

よって，W (x′)は，

W (x′) = Φ1(x′)Φ′
2(x′) − Φ′

1(x′)Φ2(x′)

=
(
sin

√
λx′

) (
−

√
λ cos

√
λ(a− x′)

)
−
(√

λ cos
√
λx′

) (
sin

√
λ(a− x′)

)
= −

√
λ sin

√
λa (3.97)

また，x<，x> を用いると，

Φ1(x) = sin
√
λx = sin

√
λx< = Φ1(x<) (x ≤ x′) (3.98)

Φ2(x) = sin
√
λ(a− x) = sin

√
λ(a− x>) = Φ2(x>) (x′ ≤ x) (3.99)

したがって，グリーン関数 Gは次のようになる（p = 1）．

G(x, x′) = −Φ1(x<)Φ2(x>)
p(x′)W (x′) = sin

√
λx< sin

√
λ(a− x>)√

λ sin
√
λa

(3.100)
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3.5 グリーン関数の複素積分

3.5.1 固有関数展開したグリーン関数（方法 I ）の複素積分

固有関数展開したグリーン関数 G（方法 I ）は次式で与えられる．

G(x, x′, λ) = −
∞∑
n=1

ψn(x)ψn(x′)
λ− λn

(3.101)

上式の複素積分を行うため，次の Cauchy の積分表示式を用いる．

1
2πj

˛
C

ψn(x)ψn(x′)
λ− λn

dλ = ψn(x)ψn(x′) (3.102)

ただし，C は複素平面の閉曲線に沿った積分路を示し，１位の極を囲むようにとったもので
ある．さらに，n = 1から n → ∞までの和をとり，−符号をつけると次のようになる．

− 1
2πj

∞∑
n=1

˛
C

ψn(x)ψn(x′)
λ− λn

dλ = −
∞∑
n=1

ψn(x)ψn(x′) (3.103)

上式の左辺はグリーン関数 Gを用いて表すことができ，

1
2πj

˛
C

G(x, x′, λ)dλ = −
∞∑
n=1

ψn(x)ψn(x′) (3.104)

一方，先に求めたように，

δ(x− x′)
σ(x′) =

∞∑
n=1

ψn(x′)ψn(x) (3.105)

よって，

1
2πj

˛
C

G(x, x′, λ)dλ = −δ(x− x′)
σ(x′) (3.106)

ただし，積分路 C はグリーン関数 G(λ)の１位の極を全て囲むようにとったものである．

3.5.2 グリーン関数（方法 II）の複素積分

方法 II では，まず，

d2G

dx2 + λG = −δ(x− x′) (3.107)

を考え，このときの境界条件は，

G = 0 (at x = 0, a) (3.108)
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グリーン関数 G（方法 II ）は，

G(x, x′, λ) = sin
√
λx< sin

√
λ(a− x>)√

λ sin
√
λa

(3.109)

上式の G(λ)は
√
λa = nπ のとき，sin

√
λa = 0であるので，

λ =
(
nπ

a

)2
≡ λn (3.110)

において極をもつ．そこで，1位の極であるかどうか評価するため，λ = λn 近傍における
sin

√
λaのふるまいを調べよう．

sin
√
λa = sin

(√
λ−

√
λn +

√
λn

)
a = sin

{(√
λ−

√
λn

)
a+

(
nπ

a
a
)}

= sin
(√

λ−
√
λn

)
a cosnπ + cos

(√
λ−

√
λn

)
a sinnπ

= sin
(

λ− λn√
λ+

√
λn
a

)
cosnπ (3.111)

ここで，λ ' λn のとき，

sin
√
λa → λ− λn√

λ+
√
λn
a · cosnπ (3.112)

つまり，

1
sin

√
λa

→
√
λ+

√
λn

(λ− λn) a · cosnπ (3.113)

これより，λn 近傍では，Gは次のようになる．

G(λ) → sin
√
λx< sin

√
λ(a− x>)

√
λ · λ− λn√

λ+
√
λn
a · cosnπ

= 1
λ− λn

(√
λ+

√
λn
)

sin
√
λx< sin

√
λ(a− x>)

√
λa cosnπ

(3.114)

よって，Gは λ = λn において 1位の極をもつことがわかる．留数は，

Res
[

1√
λ sin

√
λa
, λn

]
=

√
λ+

√
λn√

λa · cosnπ

∣∣∣∣∣
λ=λn

= 2
√
λn√

λna · cosnπ
= 2
a cosnπ

= (−1)n 2
a

(3.115)
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したがって，Gの複素積分は，積分路 C 内部の 1位の極による寄与から，次のようにして
求めることができる．

1
2πj

˛
C

G(λ)dλ = Res [G, λ1] + Res [G, λ2] + · · · Res [G, λn] + · · ·

=
∞∑
n=1

Res [G, λn] =
∞∑
n=1

(−1)n 2
a

sin
√
λnx< sin

√
λn(a− x>)

=
∞∑
n=1

(−1)n 2
a

sin
(
nπx<
a

)
sin

(
nπ(a− x>)

a

)
(3.116)

ここで，

sin
(
nπ(a− x>)

a

)
= sinnπ cos

(
nπx>
a

)
− cosnπ sin

(
nπx>
a

)
= −(−1)n sin

(
nπx>
a

)
(3.117)

これより，

1
2πj

˛
C

G(λ)dλ =
∞∑
n=1

(−1)n 2
a

sin
(
nπx<
a

){
−(−1)n sin

(
nπx>
a

)}

= −
∞∑
n=1

2
a

sin
(
nπx<
a

)
sin

(
nπx>
a

)

= −
∞∑
n=1

2
a

sin
(
nπx

a

)
sin

(
nπx′

a

)

= −
∞∑
n=1

ψn(x′)ψn(x) (3.118)

方法 II を用いて得られたグリーン関数は，方法 I で求めたものと式の形は異なるが，複素
積分すれば両者は同様の結果が得られることがわかる．

3.6 1次元グリーン関数の複素積分による3次元グリーン関数

直角座標系 (x, y, z)の3次元のグリーン関数 Gは次式を満足する．(
∇2 + k2

0

)
G = −δ(x− x′)δ(y − y′)δ(z − z′) (3.119)

この方程式の同次形(
∇2 + k2

0

)
ψ(x, y, z) = 0 (3.120)
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の解 ψ(x, y, z)が変数分離形で，ψ(x, y, z) = ψx(x)ψy(y)ψz(z) で表されるとすると，次式
が得られる．

∂2ψx(x)
∂x2 + λxψx(x) = 0 (3.121)

∂2ψy(y)
∂y2 + λyψy(y) = 0 (3.122)

∂2ψz(z)
∂z2 + λzψz(z) = 0 (3.123)

ただし，

λx + λy + λz = k2
0 (3.124)

これらの各々の式に対する 1次元グリーン関数 Gx，Gy，Gz は次式を満足する．

∂2Gx

∂x2 + λxGx = −δ(x− x′) (3.125)

∂2Gy

∂y2 + λyGy = −δ(y − y′) (3.126)

∂2Gz

∂z2 + λzGz = −δ(z − z′) (3.127)

ここで，次の複素積分 I を考える．

I = − 1
2πj

˛
Cx

(
∇2 + k2

0

)
GxGyGzdλx (3.128)

ただし，CxはGx(λx)の 1位の極を囲むようにとった積分路である．まず，λx+λy+λz = k2
0

より，

I = − 1
2πj

˛
Cx

(
∂2

∂x2 + λx + ∂2

∂y2 + λy + ∂2

∂z2 + λz

) [
GxGyGz

]
dλx

= − 1
2πj

˛
Cx

[{(
∂2

∂x2 + λx

)
Gx

}
GyGz +

{(
∂2

∂y2 + λy

)
Gy

}
GxGz

+
{(

∂2

∂z2 + λz

)
Gz

}
GxGy

]
dλx

= − 1
2πj

˛
Cx

{
− δ(x− x′)GyGz − δ(y − y′)GxGz − δ(z − z′)GxGy

}
dλx

= δ(x− x′)
{

1
2πj

˛
Cx

GyGzdλx

}
+ δ(y − y′)

{
1

2πj

˛
Cx

GxGzdλx

}

+ δ(z − z′)
{

1
2πj

˛
Cx

GxGydλx

}
(3.129)
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上式第１項は，積分路 Cx 内部に GyGz の１位の極がないのでゼロである．

I = δ(y − y′)
{

1
2πj

˛
Cx

GxGzdλx

}
+ δ(z − z′)

{
1

2πj

˛
Cx

GxGydλx

}
(3.130)

さらに，− 1
2πj を乗じ，λy について積分路 Cy で複素積分すると，

− 1
2πj

˛
Cy

I dλy

= − 1
2πj

˛
Cy

[
δ(y − y′)

{
1

2πj

˛
Cx

GxGzdλx

}
+δ(z − z′)

{
1

2πj

˛
Cx

GxGydλx

}]
dλy

= −δ(y − y′)
(

1
2πj

)2 ˛
Cy

˛
Cx

GxGzdλxdλy

− δ(z − z′)
(

1
2πj

)2 ˛
Cy

˛
Cx

GxGydλxdλy (3.131)

ただし，Cy は Gy(λy)の 1位の極を囲むようにとった積分路である．上式の第 1項は，積
分路 Cy の内部に GxGz の 1位の極がないのでゼロになる．

− 1
2πj

˛
Cy

I dλy = −δ(z − z′)
(

1
2πj

)2 ˛
Cy

˛
Cx

GxGydλxdλy

= −δ(z − z′)
(

1
2πj

˛
Cx

Gxdλx

)(
1

2πj

˛
Cy

Gydλy

)
(3.132)

さらに，

1
2πj

˛
Cx

Gx(λx)dλx = −δ(x− x′) (3.133)

1
2πj

˛
Cy

Gy(λy)dλy = −δ(y − y′) (3.134)

より，

− 1
2πj

˛
Cy

I dλy = −δ(z − z′)δ(y − y′)δ(x− x′) =
(
∇2 + k2

0

)
G (3.135)

よって，次式が得られる．

(
∇2 + k2

0

)
G =

(
− 1

2πj

)2 ˛
Cy

˛
Cx

(
∇2 + k2

0

) [
GxGyGz

]
dλxdλy (3.136)

これより，3次元グリーン関数 Gは，

G =
(

− 1
2πj

)2 ˛
Cy

˛
Cx

Gx(λx)Gy(λy)Gz(k2
0 − λx − λy)dλxdλy (3.137)
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つまり，3 次元の方程式から変数分離して得られる 1 次元の方程式に対するグリーン関数
Gx，Gy，Gz がわかれば，複素積分によって 3次元の方程式に対するグリーン関数 Gを得
られることになる．同様にして，y，z について複素積分した場合，z，xについて複素積分
した場合も求められ，次のようになる（導出省略）．

G =
(

− 1
2πj

)2 ˛
Cz

˛
Cy

Gx(k2
0 − λy − λz)Gy(λy)Gz(λz)dλydλz

=
(

− 1
2πj

)2 ˛
Cx

˛
Cz

Gx(λx)Gy(k2
0 − λx − λz)Gz(λz)dλzdλx (3.138)

問題

1次元グリーン関数を基にして 2次元グリーン関数を複素積分によって求める式を導出
せよ．

解答

次の複素積分を考える．

I = − 1
2πj

˛
Cx

(
∇2 + k2

0

) [
Gx(x, x′, λx)Gy(y, y′, λy)

]
dλx (3.139)

ただし，Cx は Gx(λx)の 1位の極を囲む積分路である．まず，λx + λy = k2
0 より，

I = − 1
2πj

˛
Cx

(
∂2

∂x2 + λx + ∂2

∂y2 + λy

) [
GxGy

]
dλx

= − 1
2πj

˛
Cx

[{(
∂2

∂x2 + λx

)
Gx

}
Gy +

{(
∂2

∂y2 + λy

)
Gy

}
Gx

]
dλx

= − 1
2πj

˛
Cx

{
− δ(x− x′)Gy(y, y′, k2

0 − λx) − δ(y − y′)Gx(x, x′, λx)
}
dλx

= δ(x− x′)
{

1
2πj

˛
Cx

Gy(y, y′, k2
0 − λx)dλx

}

+ δ(y − y′)
{

1
2πj

˛
Cx

Gx(x, x′, λx)dλx
}

(3.140)

上式の第 1項は，積分路 Cx の内部に Gy の 1位の極がないのでゼロになる．また，第
2項は，

1
2πj

˛
Cx

Gx(x, x′, λx)dλx = −δ(x− x′) (3.141)

となるので，積分 I は次のようになる．

I = −δ(x− x′)δ(y − y′) =
(
∇2 + k2

0

)
G (3.142)
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つまり，
(
∇2 + k2

0

)
G = − 1

2πj

˛
Cx

(
∇2 + k2

0

) [
Gx(x, x′, λx)Gy(y, y′, k2

0 − λx)
]
dλx

(3.143)

したがって，次のように 1次元グリーン関数の複素積分によって 2次元グリーン関数を
求めることができる．

G = − 1
2πj

˛
Cx

Gx(x, x′, λx)Gy(y, y′, k2
0 − λx)dλx (3.144)
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CHAPTER 4

ダイアディック・グリーン関数

　電磁波理論におけるダイアディック・グリーン関数について詳細に解説する．まず，ダイ
アディックの定義，基本的性質，ならびに微分演算に関する取り扱いについて述べ，電磁界
解析への応用例を示す．次に，各種のダイアディック・グリーン関数（電界型，磁界型，自
由空間におけるもの，第 1種・第 2種・第 3種）を定義し，それぞれが満たすべき支配方
程式および境界条件を導出する．さらに，これらのグリーン関数を用いた電磁界の積分表示
式を示し，その構造的特徴や対称性について議論する，最後に，異なる媒質に対するダイア
ディック・グリーン関数の定式化を示し，その物理的意味について解説する．

4.1 ダイアディック関数

ダイアディック・グリーン関数について説明するため，まず最初にダイアディックの定義，
基本特性，ダイアディックの微分などを述べ，それから電磁界解析においてダイアディック
を用いる方法を示し，各種ダイアディック・グリーン関数*1 について詳細に説明していく．

4.1.1 ダイアディックとは

直角座標系の単位ベクトルを i1，i2，i3 とおくと，ベクトル F は，

F = F1i1 + F2i2 + F3i3 =
3∑
i=1

Fiii (4.1)

*1 C. T. Tai, “Dyadic Green Functions in Electromagnetic Theory,” 2nd ed., IEEE Press, New York
(1991), ISBN-13: 978-0780304499.
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いま，次のような 3つのベクトル F1，F2，F3 を考える．

F1 = F11i1 + F21i2 + F31i3 =
3∑
i=1

Fi1ii (4.2)

F2 = F12i1 + F22i2 + F32i3 =
3∑
i=1

Fi2ii (4.3)

F3 = F13i1 + F23i2 + F33i3 =
3∑
i=1

Fi3ii (4.4)

これより，ダイアディック（dyadic）を次のように定義する．

¯̄F = F1i1 + F2i2 + F3i3 =
3∑
j=1

Fjij (4.5)

ただし，Fj と ij は一般には交換できない．このダイアディックについて，成分をスカラ表
示すると，

¯̄F =
3∑
j=1

Fjij =
3∑
j=1

( 3∑
i=1

Fijii

)
ij =

3∑
i=1

3∑
j=1

Fijiiij

= F11i1i1 + F12i1i2 + F13i1i3

+ F21i2i1 + F22i2i2 + F23i2i3

+ F31i3i1 + F32i3i2 + F33i3i3 (4.6)

ここで，9つの iiij(i, j = 1, 2, 3)を単位ダイアディクス（unit dyadics or dyads）という．
先に述べたように，ダイアディックのベクトル成分は一般には交換できないので，

iiij 6= ijii (i 6= j) (4.7)

4.1.2 ダイアディックの転置など

ダイアディック ¯̄F の転置（transpose） ¯̄F T は，ベクトルを交換したもので，次のように
なる．

¯̄F T =
3∑
j=1

ijFj =
3∑
j=1

ij

( 3∑
i=1

Fijii

)
=

3∑
j=1

3∑
i=1

Fijijii =
3∑
i=1

3∑
j=1

Fjiiiij

= F11i1i1 + F21i1i2 + F31i1i3

+ F12i2i1 + F22i2i2 + F32i2i3

+ F13i3i1 + F23i3i2 + F33i3i3 (4.8)

これより，スカラ成分 Fij を Fji に交換すれば，ダイアディックの転置が得られることがわ
かる．特別な場合として，Fij = Fji が成り立つとき，

¯̄F T
s = ¯̄Fs (4.9)
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これを，対称ダイアディク（symmetrical dyadic）という．さらに，

Fij = 1 (i = j) (4.10)
Fij = 0 (i 6= j) (4.11)

つまり，

Fij = δij (4.12)

のとき（δij はクロネッカ・デルタの記号），対称ダイアディックは，次のようになる．

¯̄Fs =
3∑
i=1

3∑
j=1

Fijiiij =
3∑
i=1

iiii = i1i1 + i2i2 + i3i3

≡ ¯̄I (4.13)

この ¯̄I を idem factor（還元因子）という（idem とは同一のものをとるということ）．

4.2 ダイアディック解析

4.2.1 ダイアディック解析におけるスカラ積

ベクトル aとダイアディック ¯̄F のスカラ積は，

a · ¯̄F = a ·

 3∑
j=1

Fjij

 =
3∑
j=1

(a · Fj) ij

=
3∑
j=1

(a1i1 + a2i2 + a3i3) · (F1ji1 + F2ji2 + F3ji3) ij

=
3∑
j=1

(a1F1j + a2F2j + a3F3j) ij

=
3∑
j=1

3∑
i=1

aiFijij (4.14)
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スカラ積はベクトルとなる．逆に，ダイアディック ¯̄F とベクトル aのスカラ積は，

¯̄F · a =
 3∑
j=1

Fjij

 · a =
3∑
j=1

Fj (ij · a)

=
3∑
j=1

(F1ji1 + F2ji2 + F3ji3) {ij · (a1i1 + a2i2 + a3i3)}

=
3∑
j=1

(F1ji1 + F2ji2 + F3ji3) aj

=
3∑
j=1

3∑
i=1

ajFijii (4.15)

これもベクトルとなる．対称ダイアディックの場合，a · ¯̄F と ¯̄F · aは等しいが，一般には，
両者は等しくない．上式の最後の項において，i，j を入れ換えて，

¯̄F · a =
3∑
i=1

3∑
j=1

aiFjiij (4.16)

先に求めた a · ¯̄F と比較すると，Fji の添え字を入れ換えたものとなっているので，

a · ¯̄F T =
3∑
i=1

3∑
j=1

aiFjiij = ¯̄F · a (4.17)

対称ダイアディック ¯̄Fs では， ¯̄F T
s = ¯̄Fs ゆえ，

a · ¯̄F T
s = a · ¯̄Fs = ¯̄Fs · a (4.18)

つまり，この場合にはスカラ積で交換できる．また， ¯̄Fs = ¯̄I の場合，¯̄I = ¯̄IT ゆえ，

a · ¯̄I = ¯̄I · a (4.19)

上式の左辺について，

a · ¯̄I = (a1i1 + a2i2 + a3i3) · (i1i1 + i2i2 + i3i3)
= a1i1 + a2i2 + a3i3

= a (4.20)

また，右辺について，
¯̄I · a = (i1i1 + i2i2 + i3i3) · (a1i1 + a2i2 + a3i3)

= a1i1 + a2i2 + a3i3

= a (4.21)

したがって，

a · ¯̄I = ¯̄I · a = a (4.22)
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4.2.2 ダイアディック解析におけるベクトル積

次に，ベクトル aとダイアディク ¯̄F のベクトル積は次のようになる．

a × ¯̄F = a ×

 3∑
j=1

Fjij

 =
3∑
j=1

(a × Fj) ij (4.23)

同様にして， ¯̄F × aは，

¯̄F × a =
 3∑
j=1

Fjij

× a =
3∑
j=1

Fj (ij × a) (4.24)

上のように，ベクトル積の結果はダイアディクとなる（スカラ積の結果はベクトルである）．

4.2.3 ダイアディック解析における 3重積

ベクトル解析において，ベクトルの 3重積は，

a · (b × c) = b · (c × a) = c · (a × b) (4.25)

いま，ベクトル cに着目して，cが式の最後になるよう書くと，

a · (b × c) = −b · (a × c) = (a × b) · c (4.26)

ダイアディクのベクトル成分 c = Fj (j = 1, 2, 3)を考えると．

a · (b × Fj) = −b · (a × Fj) = (a × b) · Fj (j = 1, 2, 3) (4.27)

これらをベクトル成分として，ダイアディクで表すと，
3∑
j=1

{a · (b × Fj)} ij = −
3∑
j=1

{b · (a × Fj)} ij =
3∑
j=1

{(a × b) · Fj} ij

a ·

b ×

 3∑
j=1

Fjij

 = −b ·

a ×

 3∑
j=1

Fjij

 = (a × b) ·

 3∑
j=1

Fjij

 (4.28)

よって，

a ·
(

b × ¯̄F
)

= −b ·
(

a × ¯̄F
)

= (a × b) · ¯̄F =
(

b × ¯̄F
)T

· a = −
(

a × ¯̄F
)T

· b

= ¯̄F T · (a × b) (4.29)

ここで，最後の 3つの項は，ダイアディクの転置の性質を用いている．さらに，最後の 2項
については，b = bj とおくと，

−
(

a × ¯̄F
)T

· bj = ¯̄F T · (a × bj) (j = 1, 2, 3) (4.30)

117



これらをベクトル成分とするダイアディクを考えると，

−
3∑
j=1

{(
a × ¯̄F

)T
· bj

}
ij =

3∑
j=1

{
¯̄F T · (a × bj)

}
ij

−
(

a × ¯̄F
)T

·

 3∑
j=1

bjij

 = ¯̄F T ·

a ×

 3∑
j=1

bjij

 (4.31)

よって，

−
(

a × ¯̄F
)T

· ¯̄b = ¯̄F T ·
(

a × ¯̄b
)

(4.32)

4.2.4 ダイアディックの発散

ダイアディック関数 ¯̄F の発散 (∇ · ¯̄F )は，

∇ · ¯̄F = ∇ ·

 3∑
j=1

Fjij

 =
3∑
j=1

(∇ · Fj) ij

= (∇ · F1) i1 + (∇ · F2) i2 + (∇ · F3) i3

=
{

∇ ·
( 3∑
i=1

Fi1ii

)}
i1 +

{
∇ ·

( 3∑
i=1

Fi2ii

)}
i2 +

{
∇ ·

( 3∑
i=1

Fi3ii

)}
i3

=
( 3∑
i=1

∂Fi1
∂xi

)
i1 +

( 3∑
i=1

∂Fi2
∂xi

)
i2 +

( 3∑
i=1

∂Fi3
∂xi

)
i3

=
3∑
j=1

3∑
i=1

∂Fij
∂xi

ij (4.33)

となり，ベクトル関数で表される．

4.2.5 ダイアディックの回転

ダイアディック関数 ¯̄F の回転 (∇ × ¯̄F )は，

∇ × ¯̄F = ∇ ×

 3∑
j=1

Fjij

 =
3∑
j=1

(∇ × Fj) ij =
3∑
j=1

{
∇ ×

( 3∑
i=1

Fijii

)}
ij

=
3∑
j=1

{ 3∑
i=1

(∇ × Fijii)
}

ij (4.34)

ここで，ベクトル公式

∇ × Fijii = ∇Fij × ii (4.35)
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を用いると，次式が得られる．

∇ × ¯̄F =
3∑
j=1

3∑
i=1

(∇Fij × ii) ij (4.36)

ダイアディックの回転は，ダイアディックで表される．

4.2.6 ベクトルの勾配

ベクトル関数 F の勾配 (∇F )は，

∇F = ∇

 3∑
j=1

Fjij

 =
 3∑
j=1

∇Fj

 ij =
3∑
j=1

(
∂Fj
∂x1

i1 + ∂Fj
∂x2

i2 + ∂Fj
∂x3

i3

)
ij

=
3∑
j=1

( 3∑
i=1

∂Fj
∂xi

ii

)
ij =

3∑
i=1

3∑
j=1

∂Fj
∂xi

iiij (4.37)

となり，ダイアディック関数で表される．いま，ダイアディック関数 ¯̄F が， ¯̄F = f ¯̄I, で定
義されているとき，

∇ · ¯̄F = ∇ ·
(
f ¯̄I
)

= ∇ ·
(
f

3∑
i=1

iiii

)
=

3∑
i=1

∇ · (fii) ii =
3∑
i=1

(∇f · ii) ii

= ∇f (4.38)

また，

∇ × ¯̄F = ∇ ×
(
f ¯̄I
)

= ∇ ×
(
f

3∑
i=1

iiii

)
=

3∑
i=1

∇ × (fii) ii =
3∑
i=1

(∇f × ii) ii

= ∇f × ¯̄I (4.39)

4.3 グリーンの定理の導出

4.3.1 ベクトル形式のグリーンの定理

ベクトル a，bについては，次のような発散に関する関係式がある．

∇ · (a × b) = b · ∇ × a − a · ∇ × b (4.40)

いま，ベクトル aの代わりに F，ベクトル bの代わりに∇ × G を考えると，

∇ · (F × ∇ × G) = (∇ × G) · (∇ × F ) − F · ∇ × (∇ × G) (4.41)
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両辺を交換し，体積積分すると，˚
V

{(∇ × G) · (∇ × F ) − F · ∇ × (∇ × G)}dV =
˚

V

∇ · (F × ∇ × G)dV

(4.42)

ガウスの発散定理（divergence theorem）を用いて上式の右辺を面積分で表すと，
˚

V

{(∇ × G) · (∇ × F ) − F · ∇ × (∇ × G)}dV =
‹
S

n · (F × ∇ × G)dS (4.43)

これをベクトル形式のグリーンの第一定理（vector Green’s theorem of the first kind）と
いう．

4.3.2 ベクトル・ダイアディック形式のグリーンの定理

ベクトル形式のグリーンの第一定理において，3 つのベクトル Gj (j = 1, 2, 3) を考え
ると，˚

V

{(∇ × F ) · (∇ × Gj) − F · ∇ × (∇ × Gj)}dV

=
‹
S

n · (F × ∇ × Gj)dS (j = 1, 2, 3) (4.44)

これらを成分とするダイアディク ¯̄Gを，

¯̄G =
3∑
j=1

Gjij (4.45)

とおくと，ベクトル・ダイアディック形式のグリーンの第一定理が得られ，次のようになる．˚
V

{(∇ × F ) · (∇ × ¯̄G) − F · ∇ × (∇ × ¯̄G)}dV

=
‹
S

n · (F × ∇ × ¯̄G)dS (4.46)

また，F とGj を入れ換えると，˚
V

{(∇ × Gj) · (∇ × F ) − Gj · ∇ × (∇ × F )}dV

=
‹
S

n · (Gj × ∇ × F )dS (j = 1, 2, 3) (4.47)

ベクトルGj が最後になるように変形すると，˚
V

[(∇ × F ) · (∇ × Gj) − {∇ × (∇ × F )} · Gj ]dV

= −
‹
S

n · {(∇ × F ) × Gj}dS (j = 1, 2, 3) (4.48)
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これより，ベクトル形式のグリーンの第二定理（vector Green’s theorem of the second
kind），あるいはストラットンの定理（Stratton’s theorem）は

˚
V

[F · ∇ × ∇ × Gj − (∇ × ∇ × F ) · Gj ] dV

= −
‹
S

n · {(∇ × F ) × Gj + F × ∇ × Gj} dS

= −
‹
S

{(n × ∇ × F ) · Gj + (n × F ) · ∇ × Gj} dS (j = 1, 2, 3) (4.49)

これらを成分とするダイアディク ¯̄Gを用いて，
˚

V

[F · ∇ × ∇ × ¯̄G − (∇ × ∇ × F ) · ¯̄G] dV

= −
‹
S

{(n × ∇ × F ) · ¯̄G + (n × F ) · ∇ × ¯̄G} dS (4.50)

これは，ベクトル・ダイアディック形式のグリーンの第二定理（vector-dyadic Green’s
theorem of the second kind）である．

4.3.3 ダイアディック形式のグリーンの定理

さらに，全てダイアディクの表示式を求める．まず，Fj (j = 1, 2, 3) が最後になるよう
ダイアディクの転置を用いてベクトル・ダイアディク形式のグリーンの第一定理を変形す
ると，

˚
V

{(∇ × ¯̄G) · (∇ × Fj)T − (∇ × ∇ × ¯̄G)T · Fj}dV

=
‹
S

(n × Fj) · (∇ × ¯̄G)dS =
‹
S

(∇ × ¯̄G)T · (n × Fj)dS (4.51)

これらを成分とするダイアディク ¯̄F を，次のようにおく．

¯̄F =
3∑
j=1

Fjij (4.52)

これより，ダイアディクス形式のグリーンの第一定理（the dyadic-dyadic Green’s theorem
of the first kind）は次のようになる．

˚
V

{(∇ × ¯̄G) · (∇ × ¯̄F )T − (∇ × ∇ × ¯̄G)T · ¯̄F }dV

=
‹
S

(∇ × ¯̄G)T · (n × ¯̄F )dS (4.53)
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また，ダイアディク形式のグリーンの第二定理（the dyadic-dyadic Green’s theorem of the
second kind ）は次のようになる．

˚
V

(∇ × ∇ × ¯̄G)T · ¯̄F − ¯̄GT · (∇ × ∇ × ¯̄F ) dV

= −
‹
S

{ ¯̄GT · (n × ∇ × ¯̄F ) + (∇ × ¯̄G)T · (n × ¯̄F )} dS (4.54)

4.4 ダイアディック・グリーン関数の定義

4.4.1 ダイアディック形式のMaxwellの方程式

Maxwellの方程式を電流源 Jj (j = 1, 2, 3)，電荷 ρj について示すと，

∇ × Ej = −jωµHj (4.55)
∇ × Hj = Jj + jωεEj (4.56)
∇ · Hj = 0 (4.57)

∇ · Ej = ρj
ε

(4.58)

∇ · Jj = −jωρj (4.59)

いま，各々のダイアディックおよびベクトルを次式で定義する．

¯̄E ≡
3∑
j=1

Ejij =
3∑
j=1

3∑
i=1

Eijiiij (4.60)

¯̄H ≡
3∑
j=1

Hjij =
3∑
j=1

3∑
i=1

Hijiiij (4.61)

¯̄J ≡
3∑
j=1

Jjij =
3∑
j=1

3∑
i=1

Jijiiij (4.62)

ρ ≡
3∑
j=1

ρjij (4.63)

ただし，ρ は形式的なベクトル表示である．これより，

∇ × ¯̄E = −jωµ ¯̄H (4.64)

∇ × ¯̄H = ¯̄J + jωε ¯̄E (4.65)

∇ · ¯̄H = 0 (4.66)

∇ · ¯̄E = ρ

ε
(4.67)

∇ · ¯̄J = −jωρ (4.68)
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4.4.2 ダイアディック・グリーン関数の定義

点 r = r′ における微小電流素子は，

Jj = cjδ(r − r′)ij (j = 1, 2, 3) (4.69)

ここでは，係数 cj を

−jωµcj = 1 (4.70)

となるように決めると，

jωµJj = jωµcjδ(r − r′)ij = −δ(r − r′)ij (4.71)

これより，ダイアディック表示（dyadic form）では，

jωµ ¯̄J = −
3∑
j=1

δ(r − r′)ijij = −¯̄Iδ(r − r′) (4.72)

このようなダイアディック微小電流素子がある場合の電界 ¯̄E を，電界に対するダイア
ディック・グリーン関数（the dyadic Green function of the electric type or the electric
dyadic Green function） ¯̄Ge とする．

¯̄Ge ≡ ¯̄E(¯̄Iδ) (4.73)

また，このときの磁界 ¯̄H を基に

¯̄Gm ≡ −jωµ ¯̄H(¯̄Iδ) (4.74)

より，磁界に対するダイアディック・グリーン関数（the dyadic Green function of the
magnetic type or the magnetic dyadic Green function） ¯̄Gmも定義する．電荷については，

ρ = ∇ · ¯̄J
−jω

= 1
−jω

∇ · −¯̄Iδ(r − r′)
jωµ

= − 1
ω2µ

∇ ·
(¯̄Iδ(r − r′)

)
(4.75)

ここで，ダイアディック公式 ∇ · (f ¯̄I) = ∇f より，

ρ = − ε

k2 ∇δ(r − r′) (4.76)

さて，∇ × ¯̄E = −jωµ ¯̄H に，式 (4.73)の ¯̄Ge，および式 (4.74)の ¯̄Gm を代入すると，

∇ × ¯̄Ge = ¯̄Gm (4.77)

同様にして，∇ × ¯̄H = ¯̄J + jωµ ¯̄E に， ¯̄Ge， ¯̄Gm，および ¯̄J の式を代入すると，

∇ × ¯̄Gm = ¯̄Iδ(r − r′) + k2 ¯̄Ge (4.78)
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さらに，∇ · ¯̄E = ρ/εに， ¯̄Ge，および式 (4.76)の ρを代入すると，

∇ · ¯̄Ge = − 1
k2 ∇δ(r − r′) (4.79)

また，∇ · ¯̄H = 0より，

∇ · ¯̄Gm = 0 (4.80)

これより，

¯̄Ge = ¯̄Ge(r, r′) =
3∑
j=1

Ge,jij , (4.81)

¯̄Gm = ¯̄Gm(r, r′) =
3∑
j=1

Gm,jij (4.82)

ただし，Ge,j，Gm,j は電界および磁界に対するベクトル・グリーン関数（the vector Green
functions of the electric type and the magnetic type）を示す．また，r は観測点の位置ベ
クトル，r′ は波源の位置ベクトルを示す．

4.4.3 ダイアディック・グリーン関数の境界条件

境界条件については，領域 (+)，(−)に対して，

n ×
(
E(+) − E(−)

)
= 0, (4.83)

n ×
(
H(+) − H(−)

)
= Js (4.84)

ただし，nは領域 (+)側を正にとる法線ベクトル，Js は境界面上の面電流分布を示す．こ
れを基にして， ¯̄Ge に関する境界条件（boundary condition）は次のようになる．

n ×
( ¯̄G(+)

e − ¯̄G(−)
e

)
= 0 (4.85)

境界面上 r = r′ に微小電流素子をおいた場合，面電流に関する式はダイアディック表示で，

jωµ ¯̄Js = −(¯̄I − nn)δ(r − r′) = −¯̄Isδ(r − r′) (4.86)

このとき，δ(r − r′)は 2次元のデルタ関数である．
¨

δ(r − r′)dS = 1 (4.87)

よって， ¯̄Gm に関する境界条件は次のようになる．

n ×
( ¯̄G(+)

m − ¯̄G(−)
m

)
= ¯̄Isδ(r − r′) (4.88)
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4.5 ダイアディック・グリーン関数を用いた電磁界の積分表
示式

次のMaxwellの方程式

∇ × E = −jωµH (4.89)
∇ × H = J + jωεE (4.90)

から，E あるいはH を消去すると，一様媒質における電界E および磁界H の満たすべき
方程式が得られ，次のようになる．

∇ × ∇ × E − k2E = −jωµJ (4.91)
∇ × ∇ × H − k2H = ∇ × J (4.92)

ただし，k = √
µε．一方，ダイアディック・グリーン関数を再記して，

∇ × ¯̄Ge = ¯̄Gm (4.93)

∇ × ¯̄Gm = ¯̄Iδ(r − r′) + k2 ¯̄Ge (4.94)

これらの式より， ¯̄Ge あるいは ¯̄Gm を消去すると，一様媒質における電界および磁界に対す
るダイアディック・グリーン関数 ¯̄Ge， ¯̄Gm の満たすべき方程式が得られ，次のようになる．

∇ × ∇ × ¯̄Ge − k2 ¯̄Ge = ¯̄Iδ(r − r′) (4.95)

∇ × ∇ × ¯̄Gm − k2 ¯̄Gm = ∇ ×
(¯̄Iδ(r − r′)

)
(4.96)

ここで，ベクトル・ダイアディック形式のグリーンの第二定理を再記すると，
˚

V

{
F ·

(
∇ × ∇ × ¯̄G

)
−
(
∇ × ∇ × F

)
· ¯̄G

}
dV

=
‹
S

{(
∇ × F

)
·
(
n × ¯̄G

)
−
(
n × F

)
·
(
∇ × ¯̄G

)}
dS (4.97)

これより，F ≡ E(r)， ¯̄G ≡ ¯̄Ge(r, r′) とおくと，
˚

V

{
E(r) ·

(
∇ × ∇ × ¯̄Ge(r, r′)

)
−
(
∇ × ∇ × E(r)

)
· ¯̄Ge(r, r′)

}
dV

=
‹
S

{(
∇ × E(r)

)
·
(
n × ¯̄Ge(r, r′)

)
−
(
n × E(r)

)
·
(
∇ × ¯̄Ge(r, r′)

)}
dS (4.98)

ここで，∇ × ∇ × ¯̄Ge(r, r′)，∇ × ∇ × E(r)は，

∇ × ∇ × ¯̄Ge(r, r′) = k2 ¯̄Ge(r, r′) + ¯̄Iδ(r − r′)
∇ × ∇ × E(r) = k2E(r) − jωJ(r) (4.99)
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したがって，
˚

V

{
E(r) ·

(
∇ × ∇ × ¯̄Ge(r, r′)

)
−
(
∇ × ∇ × E(r)

)
· ¯̄Ge(r, r′)

}
dV

=
˚

V

{
E(r) ·

(
k2 ¯̄Ge(r, r′) + ¯̄Iδ(r − r′)

)
−
(
k2E(r) − jωJ(r)

)
· ¯̄Ge(r, r′)

}
dV

= E(r′) + jωµ

˚
V

J(r) · ¯̄Ge(r, r′)dV

=
‹
S

{(
∇ × E(r)

)
·
(
n × ¯̄Ge(r, r′)

)
−
(
n × E(r)

)
·
(
∇ × ¯̄Ge(r, r′)

)}
dS

(4.100)

次に，ベクトル・ダイアディック形式のグリーンの第二定理の右辺（the right-hand term
of the second vector-dyadic Green’s theorem）を変形して，

˚
V

{
F ·

(
∇ × ∇ × ¯̄G

)
−
(
∇ × ∇ × F

)
· ¯̄G

}
dV

=
‹
S

{
F ·

(
n × ∇ × ¯̄G

)
−
(
n × ∇ × F

)
· ¯̄G

}
dS (4.101)

これより，F ≡ H(r)， ¯̄G ≡ ¯̄Ge(r, r′) とおくと，上式の左辺は，
˚

V

{
H(r) ·

(
∇ × ∇ × ¯̄Ge(r, r′)

)
−
(
∇ × ∇ × H(r)

)
· ¯̄Ge(r, r′)

}
dV

=
‹
S

{
H(r) ·

(
n × ∇ × ¯̄Ge(r, r′)

)
−
(
n × ∇ × H(r)

)
· ¯̄Ge(r, r′)

}
dS (4.102)

ここで，∇ × ∇ × ¯̄Ge(r, r′)，∇ × ∇ × H(r)は，

∇ × ∇ × ¯̄Ge(r, r′) = k2 ¯̄Ge(r, r′) + ¯̄Iδ(r − r′)
∇ × ∇ × H(r) = k2H(r) + ∇ × J(r) (4.103)

これより，式 (4.102)の左辺は，
˚

V

{
H(r) ·

(
∇ × ∇ × ¯̄Ge(r, r′)

)
−
(
∇ × ∇ × H(r)

)
· ¯̄Ge(r, r′)

}
dV

=
˚

V

{
H(r) ·

(
k2 ¯̄Ge(r, r′) + ¯̄Iδ(r − r′)

)
−
(
k2H(r) + ∇ × J(r)

)
· ¯̄Ge(r, r′)

}
dV

= H(r′) −
˚

V

(
∇ × J(r)

)
· ¯̄Ge(r, r′)dV (4.104)

式 (4.104)の第 2項の積分は，ダイアディック公式

∇ · (a × ¯̄b) = (∇ × a) · ¯̄b − a · (∇ × ¯̄b) (4.105)
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を用いると，
˚

V

(
∇ × J(r)

)
· ¯̄Ge(r, r′)dV

=
˚

V

∇ ·
(
J(r) × ¯̄Ge(r, r′)

)
dV +

˚
V

J(r) · ∇ × ¯̄Ge(r, r′)dV (4.106)

ダイアディックの発散定理（dyadic divergence theorem）より，上式の第 1項の体積積分
は面積積分に次のように変換できる．

˚
V

∇ ·
(
J(r) × ¯̄Ge(r, r′)

)
dV =

‹
S

n ·
(
J(r) × ¯̄Ge(r, r′)

)
dS

=
‹
S

(
n × J(r)

)
· ¯̄Ge(r, r′)dS (4.107)

したがって，

H(r′) −
‹
S

(
n × J(r)

)
· ¯̄Ge(r, r′)dS −

˚
V

J(r) · ∇ × ¯̄Ge(r, r′)dV

=
‹
S

{
H(r) ·

(
n × ∇ × ¯̄Ge(r, r′)

)
−
(
n × ∇ × H(r)

)
· ¯̄Ge(r, r′)

}
dS (4.108)

あるいは，

H(r′) −
˚

V

J(r) · ∇ × ¯̄Ge(r, r′)dV

=
‹
S

{
H(r) ·

(
n × ∇ × ¯̄Ge(r, r′)

)
− n ×

(
∇ × H(r) − J(r)

)
· ¯̄Ge(r, r′)

}
dS

(4.109)

これより，電界および磁界に関する式は，次のようになる．

E(r′) = −jωµ
˚

V

J(r) · ¯̄Ge(r, r′)dV

+
‹
S

{
H(r) ·

(
n × ¯̄Ge(r, r′)

)
−
(
n × E(r)

)
·
(
∇ × ¯̄Ge(r, r′)

)}
dS (4.110)

H(r′) =
˚

V

J(r) · ∇ × ¯̄Ge(r, r′)dV

+
‹
S

{
H(r) ·

(
n × ∇ × ¯̄Ge(r, r′)

)
− jωε

(
n × E(r)

)
· ¯̄Ge(r, r′)

}
dS

(4.111)

4.6 自由空間中のダイアディック・グリーン関数の導出
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4.6.1 自由空間のスカラー・グリーン関数

自由空間中のダイアディック・グリーン関数（free-space dyadic Green functions）を導
出しよう．まず，∇ × ¯̄Ge = ¯̄Gm の両辺の回転をとると．

∇ × ∇ × ¯̄Ge = ∇ × ¯̄Gm (4.112)

上式の右辺は，

∇ × ¯̄Gm = ¯̄Iδ(r − r′) + k2 ¯̄Ge (4.113)

よって，

∇ × ∇ × ¯̄Ge − k2 ¯̄Ge = ¯̄Iδ(r − r′) (4.114)

同様にして，∇ × ¯̄Gm = ¯̄Iδ(r − r′) + k2 ¯̄Ge の両辺の回転をとると．

∇ × ∇ × ¯̄Gm = ∇ ×
(¯̄Iδ(r − r′)

)
+ k2∇ × ¯̄Ge (4.115)

これに，∇ × ¯̄Ge = ¯̄Gm を代入して，

∇ × ∇ × ¯̄Gm − k2 ¯̄Gm = ∇ ×
(¯̄Iδ(r − r′)

)
(4.116)

さて，−jωµJ(r) = δ(r − r′)ij による電界 E0,j(r)は，

E0,j(r) = −jω
(

A + 1
k2 ∇∇ · A

)
(4.117)

ここで，

A = µ

ˆ
V

G0(r, r0)J(r0)dV0 = µ

ˆ
V

G0(r, r0)δ(r0 − r′)
−jωµ

ijdV0

= 1
−jω

G0(r, r′)ij (4.118)

よって，

E0,j(r) =
(

1 + 1
k2 ∇∇·

)
G0(r, r′)ij (4.119)

4.6.2 自由空間の電界に対するダイアディック・グリーン関数

自由空間の電界に対するダイアディック・グリーン関数 ¯̄Ge0 は，

¯̄Ge0 =
3∑
j=1

E0,jij =
3∑
j=1

(
1 + 1

k2 ∇∇·
)
G0(r, r′)ijij

=
3∑
j=1

Ge0,jij (4.120)
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ただし，Ge0,j は xj 方向 (j = 1, 2, 3)に沿う波源による電界に対する自由空間のベクトル・
グリーン関数（the free-space vector Green function of the electric type due to a source
pointed in the xj-direction (j = 1, 2, 3)）を示す．また，G0は自由空間のスカラー・グリー
ン関数（the free-space scalar Green function）を示し，次のようになる．

G0(r, r′) = e−jk|r−r′|

4π|r − r′|
(4.121)

ダイアディック公式 ∇ · (f ¯̄I) = ∇f などによりさらに変形すると，

¯̄Ge0 = G0

3∑
j=1

ijij + 1
k2 ∇

3∑
j=1

∇ ·G0ijij = G0
¯̄I + 1

k2 ∇∇ · (G0
¯̄I)

=
(

¯̄I + 1
k2 ∇∇

)
G0(r, r′) (4.122)

4.6.3 自由空間の磁界に対するダイアディック・グリーン関数

自由空間の磁界に対するダイアディック・グリーン関数（the free-space magnetic dyadic
Green function） ¯̄Gm0 は，

¯̄Gm0 = ∇ × ¯̄Ge0 = ∇ ×
[(

¯̄I + 1
k2 ∇∇

)
G0

]
(4.123)

ベクトル公式∇ × (∇fj) = 0より，ダイアディックの場合も同様に成り立ち，

∇ × ∇(∇G0) = 0 (4.124)

となる．よって，
¯̄Gm0 = ∇ ×

(
¯̄IG0

)
(4.125)

さらに，ダイアディック公式

∇ × (a¯̄b) = a∇ × ¯̄b + (∇a) × ¯̄b (4.126)

より，
¯̄Gm0 = G0∇ × ¯̄I + (∇G0) × ¯̄I =

(
∇G0

)
× ¯̄I (4.127)

4.7 自由空間中のダイアディック・グリーン関数の対称性

自由空間中のダイアディック・グリーン関数 ¯̄Ge0， ¯̄Gm0 は，先に示したように，

¯̄Ge0(r, r′) =
(

¯̄I + 1
k2 ∇∇

)
G0(r, r′) (4.128)

¯̄Gm0(r, r′) = ∇ ×
(

¯̄IG0(r, r′)
)

(4.129)
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あるいは，

¯̄Gm0(r, r′) = ∇G0(r, r′) × ¯̄I (4.130)

ここで，G0(r, r′)は自由空間中のスカラ・グリーン関数を示し，

G0(r, r′) = e−jkR

4πR = G0(r′, r) (4.131)

ただし，

R ≡ |r − r′| =
√

(x1 − x′
1)2 + (x2 − x′

2)2 + (x3 − x′
3)2 (4.132)

まず，

∇G0(r, r′) = ∇G0(r′, r) = ∂G0

∂R
∇R = ∂G0

∂R
(−∇′R)

= −∇′G0(r′, r) (4.133)

ただし，

∇R = r − r′

R
= −∇′R (4.134)

さらに，

∇∇G0(r, r′) = −∇∇′G0(r′, r) = −∇
(
∂G0

∂R
(∇′R)

)
= ∇′

(
∂G0

∂R
(∇′R)

)
= ∇′∇′G0(r′, r) (4.135)

ただし，

∇′∇R = ∇′
(

r − r′

R

)
= −∇

(
r − r′

R

)
= −∇∇R (4.136)

さて， ¯̄Ge0(r, r′) において，r，r′ を交換すると，

¯̄Ge0(r′, r) =
(

¯̄I + 1
k2 ∇′∇′

)
G0(r′, r) (4.137)

ここで，∇∇G0(r, r′) = ∇′∇′G0(r′, r)より，

¯̄Ge0(r′, r) =
(

¯̄I + 1
k2 ∇∇

)
G0(r, r′)

= ¯̄Ge0(r, r′) (4.138)
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転置をとると，
(

¯̄Ge0(r′, r)
)T

=
{(

¯̄I + 1
k2 ∇′∇′

)
G0(r′, r)

}T
= ¯̄Ge0(r′, r) (4.139)

ただし，
(¯̄I
)T

= ¯̄I．また，

(
∇′∇′G0(r′, r)

)T
=
 3∑
i=1

3∑
j=1

∂2G0

∂x′
i∂x

′
j

iiij

T
= ∇′∇′G0(r′, r) (4.140)

これより，次のように ¯̄Ge0 についての対称性（symmetrical property）が得られる．
(

¯̄Ge0(r′, r)
)T

= ¯̄Ge0(r, r′) (4.141)

次に， ¯̄Gm0(r, r′) についても r，r′ を交換し，式 (4.129)より，

¯̄Gm0(r′, r) = ∇′ ×
(

¯̄IG0(r′, r)
)

= ∇′G0 × ¯̄I = −∇G0 × ¯̄I = −∇ ×
(

¯̄IG0(r, r′)
)

= − ¯̄Gm0(r, r′) (4.142)

ここで，ダイアディクス公式 (a × ¯̄F )T · ¯̄b = − ¯̄F T · (a × ¯̄b)より，

(∇′G0 × ¯̄I)T · ¯̄I = −¯̄IT · (∇′G0 × ¯̄I)

(∇′G0 × ¯̄I)T = −∇′G0 × ¯̄I (4.143)

また， ¯̄Gm0 の転置は，式 (4.130)より，
( ¯̄Gm0(r′, r)

)T
=
(
∇′G0 × ¯̄I

)T
= −∇′G0 × ¯̄I

= − ¯̄Gm0(r′, r) (4.144)

したがって，次のように ¯̄Gm0 についての対称性が得られる．(
¯̄Gm0(r′, r)

)T
= ¯̄Gm0(r, r′) (4.145)

4.8 自由空間中のダイアディック・グリーン関数による電磁界

一様媒質の自由空間において，散乱体がなく，電流源 J のみがある場合，ダイアディッ
ク・グリーン関数を用いた電磁界の表示式の積分範囲 V は無限空間にとり，面積分は無限
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遠ゆえ放射条件よりゼロとなる．したがって，電界E および磁界H は，自由空間のダイア
ディック・グリーン関数 ¯̄Ge0(r, r′)， ¯̄Gm0(r, r′)を用いた体積積分の項のみで表され，次の
ようになる．

E(r′) = −jωµ
˚

V

J(r) · ¯̄Ge0(r, r′)dV (4.146)

H(r′) =
˚

V

J(r) · ∇ × ¯̄Ge0(r, r′)dV =
˚

V

J(r) · ¯̄Gm0(r, r′)dV (4.147)

いま，r と r′ を交換すると，

E(r) = −jωµ
˚

V

J(r′) · ¯̄Ge0(r′, r)dV ′ (4.148)

H(r) =
˚

V

J(r′) · ∇ × ¯̄Ge0(r′, r)dV ′ =
˚

V

J(r′) · ¯̄Gm0(r′, r)dV ′ (4.149)

ダイアディックのスカラ積の性質より，

E(r) = −jωµ
˚

V

( ¯̄Ge0(r′, r)
)T

· J(r′)dV ′ (4.150)

H(r) =
˚

V

( ¯̄Gm0(r′, r)
)T

· J(r′)dV ′ (4.151)

自由空間中のダイアディック・グリーン関数（the free-space dyadic Green functions）の
対称性（symmetrical property）より，

E(r) = −jωµ
˚

V

¯̄Ge0(r, r′) · J(r′)dV ′ (4.152)

H(r) =
˚

V

¯̄Gm0(r, r′) · J(r′)dV ′ =
˚

V

∇ × ¯̄Ge0(r, r′) · J(r′)dV ′ (4.153)

4.9 第 1種および第 2種ダイアディック・グリーン関数

4.9.1 第 1種電界型ダイアディック・グリーン関数（完全導体）

積分領域 V を，面 Sd と面 S∞ に囲まれた領域にとり，面 S∞ を無限遠とすると，面積分
の項は，面 S∞ 上の積分が放射条件によりゼロとなり，面 Sd のみとなる．さらに，面 Sd

で次のような境界条件を満たすグリーン関数を第 1種電界型グリーン関数（electric dyadic
Green function of the first kind）といい， ¯̄Ge1 とおくと，

n × ¯̄Ge1(r, r′) = 0 (on Sd) (4.154)
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これより，

E(r′) = −jωµ
˚

V

J(r) · ¯̄Ge1(r, r′)dV −
‹
Sd

(
n × E(r)

)
·
(
∇ × ¯̄Ge1(r, r′)

)
dS

(4.155)

いま，面 Sd が完全導体の場合，電界の境界条件 n × E(r) = 0 (on Sd) より，面 Sd 上の面
積分は完全にゼロとなり，電界 E は次のようになる．

E(r′) = −jωµ
˚

V

J(r) · ¯̄Ge1(r, r′)dV (4.156)

グリーン関数の対称性などを用いれば，次式が得られる（導出省略）．

E(r) = −jωµ
˚

V

¯̄Ge1(r, r′) · J(r′)dV ′ (4.157)

r’
r

図 4.1. 完全導体による散乱問題 (case A)

4.9.2 第 1種電界型ダイアディック・グリーン関数（開口面）

また，別の問題として，領域 V には電流源がなく，Sd 内部に電流源があり，面 Sd の一
部に開口 SA がある場合，体積積分の項がゼロとなり，

E(r′) = −
¨
SA

(
n × E(r)

)
·
(
∇ × ¯̄Ge1(r, r′)

)
dS (4.158)

波源は円筒内部にあり，開口 SA 上の電界 E(r)より，磁気的な等価電流 E(r) × nを考え
ればよい．
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図 4.2. 完全導体表面の開口面からの放射 (case B)

4.9.3 第 2種電界型ダイアディック・グリーン関数

面 Sdで次のような境界条件を満たすグリーン関数は第 2種グリーン関数（electric dyadic
Green function of the second kind）といい， ¯̄Ge2 とおくと，

n × ∇ × ¯̄Ge2(r, r′) = 0 (on Sd) (4.159)

これより，

H(r′) =
˚

V

J(r) · ∇ × ¯̄Ge2(r, r′)dV − jωε

‹
Sd

(
n × E(r)

)
· ¯̄Ge2(r, r′)dS

(4.160)

いま，面 Sd が完全導体の場合，電界の境界条件 n × E(r) = 0 (on Sd) より，面 Sd 上の面
積分は完全にゼロとなり，磁界H は次のようになる．

H(r′) =
˚

V

J(r) · ∇ × ¯̄Ge2(r, r′)dV (4.161)

また，別の問題として，領域 V には電流源がなく，Sd 内部に電流源があり，面 Sd の一部
に開口 SA がある場合，体積積分の項がゼロとなり，

H(r′) = −jωε
‹
SA

(
n × E(r)

)
· ¯̄Ge2(r, r′)dS (4.162)
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4.9.4 第 1種および第 2種磁界型ダイアディック・グリーン関数

第 1種グリーン関数の境界条件を，磁界に対するダイアディック・グリーン関数に適用し
たものを ¯̄Gm1 とすると，

n × ¯̄Gm1(r, r′) = 0 (on Sd) (4.163)

電界および磁界に対するダイアディック・グリーン関数 ¯̄Ge，¯̄Gmとの関係式∇× ¯̄Ge = ¯̄Gm

より，上式に対応するのは，

n ×
(
∇ × ¯̄Ge2(r, r′)

)
= 0 (on Sd)

これを，ダイアディック Neumann 境界条件（dyadic Neumann boundary condition）とい
う．よって，

∇ × ¯̄Ge2 = ¯̄Gm1 (4.164)

また，第 2種グリーン関数の境界条件を，磁界に対するダイアディック・グリーン関数に適
用したものを ¯̄Gm2 とすると，

n × ∇ × ¯̄Gm2(r, r′) = 0 (on Sd) (4.165)

電界および磁界に対するダイアディック・グリーン関数 ¯̄Ge， ¯̄Gm との関係式∇ × ¯̄Gm =
¯̄Iδ(r − r′) + k2 ¯̄Ge より，

∇ × ¯̄Gm2 = ¯̄Iδ(r − r′) + k2 ¯̄Ge1 (4.166)

ただし，

∇ · ¯̄Gm2 = 0 (4.167)

4.10 第 3種ダイアディック・グリーン関数

4.10.1 異なる媒質の一方に電流源がある場合のダイアディック・グリーン
関数

図に示すように，異なる媒質におけるダイアディック・グリーン関数は，観測点 rおよび
波源 r′ のある領域を肩文字に記して， ¯̄G(11)

e ， ¯̄G(12)
e ， ¯̄G(21)

e ， ¯̄G(22)
e ， ¯̄G(11)

m ， ¯̄G(12)
m ， ¯̄G(21)

m ，
¯̄G(22)
m で表される．これらを第 3 種ダイアディック・グリーン関数（the dyadic Green

functions of the third kind）という．このとき，第 1，2種の添え字 1, 2に対応するものは
通常，省略される．
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図 4.3. 異なる媒質の一方に電流源がある境界値問題 (case C)

波源が領域 #1にある場合，電磁界の満たすべき方程式は次のようになる．

∇ × ∇ × E1(r) − k2
1E1(r) = −jωµ1J1(r) (4.168)

∇ × ∇ × E2(r) − k2
2E2(r) = 0 (4.169)

∇ × ∇ × H1(r) − k2
1H1(r) = ∇ × J1(r) (4.170)

∇ × ∇ × H2(r) − k2
2H2(r) = 0 (4.171)

あるいは，波源が領域 #2にある場合，電磁界の満たすべき方程式は次のようになる．

∇ × ∇ × E1(r) − k2
1E1(r) = 0 (4.172)

∇ × ∇ × E2(r) − k2
2E2(r) = −jωµ2J2(r) (4.173)

∇ × ∇ × H1(r) − k2
1H1(r) = 0 (4.174)

∇ × ∇ × H2(r) − k2
2H2(r) = ∇ × J2(r) (4.175)

媒質の異なる２つの領域があって，一方に電流源がある問題について考える．まず，観測点
r を領域 #1，電流源のある点 r′ も領域 #1においたときの電界に対するダイアディック・
グリーン関数を ¯̄G(11)

e (r, r′)とすると，満たすべき方程式は次のようになる．

∇ × ∇ × ¯̄G(11)
e (r, r′) − k2

1
¯̄G(11)
e (r, r′) = ¯̄Iδ(r − r′) (region #1) (4.176)

観測点 r を領域 #2，電流源の位置 r′ を領域 #1とした ¯̄G(21)
e (r, r′)は，

∇ × ∇ × ¯̄G(21)
e (r, r′) − k2

2
¯̄G(21)
e (r, r′) = 0 (region #2) (4.177)

同様にして，観測点 r を領域 #1，電流源の位置 r′ を領域 #2とした ¯̄G(12)
e (r, r′)は，

∇ × ∇ × ¯̄G(12)
e (r, r′) − k2

1
¯̄G(12)
e (r, r′) = 0 (region #1) (4.178)

観測点 r を領域 #2，電流源の位置 r′ を領域 #2とした ¯̄G(22)
e (r, r′)は，

∇ × ∇ × ¯̄G(22)
e (r, r′) − k2

2
¯̄G(22)
e (r, r′) = ¯̄Iδ(r − r′) (region #2) (4.179)
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ここで，ベクトル・ダイアディック形式のグリーンの第二定理を再記して，
˚

V

{
F ·

(
∇ × ∇ × ¯̄G

)
−
(
∇ × ∇ × F

)
· ¯̄G

}
dV

=
‹
S

{
F ·

(
n × ∇ × ¯̄G

)
−
(
n × ∇ × F

)
· ¯̄G

}
dS (4.180)

4.10.2 電流源のある領域 #1について

領域 #1に電流源 J1 がある場合のその領域 #1の電界を E1 とおくと，

∇ × ∇ × E1(r) − k2
1E1(r) = −jωµ1J1(r) (4.181)

∇ × ∇ × ¯̄G(11)
e (r, r′) − k2

1
¯̄G(11)
e (r, r′) = ¯̄Iδ(r − r′) (4.182)

これより，F ≡ E1(r), ¯̄Ge ≡ ¯̄G(11)
e (r, r′)として，領域 #1（V1 とおく）においてベクト

ル・ダイアディック形式のグリーンの第二定理を用いると，

E1(r′) + jωµ1

˚
V1

J1(r) · ¯̄G(11)
e (r, r′)dV

= −
¨
Si

{(
n1 × ∇ × E1(r)

)
· ¯̄G(11)

e (r, r′) +
(
n1 × E1(r)

)
·
(
∇ × ¯̄G(11)

e (r, r′)
)}
dS

(4.183)

ただし，積分範囲 V1 は領域 #1 にとり，この領域を囲む面は，無限遠と領域 #1，#2 の
境界面からなり，無限遠での積分が放射条件よりゼロとなるので，上式の面 Si は領域 #1，
#2の境界面を示す．また，法線ベクトル n1 は，面 Si の法線方向で領域 #2を向く方向を
正にとる．
領域 #1に電流源 J1 がある場合の領域 #2の電界を E2 とおき，

∇ × ∇ × E2(r) − k2
2E2(r) = 0 (4.184)

∇ × ∇ × ¯̄G(21)
e (r, r′) − k2

2
¯̄G(21)
e (r, r′) = 0 (4.185)

同様にして，F ≡ E2(r)， ¯̄Ge ≡ ¯̄G(21)
e (r, r′)として，領域 #2（V2 とおく）においてベク

トル・ダイアディック形式のグリーンの第二定理を用いると，
˚

V2

{
E2(r) ·

(
∇ × ∇ × ¯̄G(21)

e (r, r′)
)

−
(
∇ × ∇ × E2(r)

)
· ¯̄G(21)

e (r, r′)
}
dV

=
˚

V2

{
E2(r) · k2

2
¯̄G(21)
e (r, r′) − k2

2E2(r) · ¯̄G(21)
e (r, r′)

}
dV = 0

= −
¨
Si

{(
n2 × ∇ × E2(r)

)
· ¯̄G(21)

e (r, r′) +
(
n2 × E2(r)

)
·
(
∇ × ¯̄G(21)

e (r, r′)
)}
dS

(4.186)
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ここで，領域 #1，#2の境界条件

n1 ×
(
E1(r) − E2(r)

)
= 0 (4.187)

n1 ×
(
H1(r) − H2(r)

)
= 0 (4.188)

より，

n1 ×
( ¯̄G(11)

e (r, r′) − ¯̄G(21)
e (r, r′)

)
= 0 (4.189)

n1 ×
(

1
µ1

∇ × ¯̄G(11)
e (r, r′) − 1

µ2
∇ × ¯̄G(21)

e (r, r′)
)

= 0 (4.190)

ただし，

∇ × E(1
2

)(r) = −jωµ(1
2

)(r)H(1
2

)(r) (4.191)

これより，境界面 Si での面積分は等しくゼロになるので，

E1(r′) + jωµ1

ˆ
V1

J1(r) · ¯̄G(11)
e (r, r′)dV = 0 (4.192)

よって，

E1(r′) = −jωµ1

ˆ
V1

J1(r) · ¯̄G(11)
e (r, r′)dV (4.193)

4.10.3 電流源のない領域 #2について

一方，E2 については，

∇ × ∇ × E1(r) − k2
1E1(r) = −jωµ1J1(r) (4.194)

∇ × ∇ × ¯̄G(12)
e (r, r′) − k2

1
¯̄G(12)
e (r, r′) = 0 (4.195)

そして，F ≡ E1(r)， ¯̄Ge ≡ ¯̄G(12)
e (r, r′)とし，領域 #1においてベクトル・ダイアディッ

ク形式のグリーンの第二定理を用いると，
˚

V1

{
E1(r) ·

(
∇ × ∇ × ¯̄G(12)

e (r, r′)
)

−
(
∇ × ∇ × E1(r)

)
· ¯̄G(12)

e (r, r′)
}
dV

=
˚

V1

{
E1(r) · k2

1
¯̄G(12)
e (r, r′) −

(
k2

1E1(r) − jωµ1J1(r)
)

· ¯̄G(12)
e (r, r′)

}
dV

= jωµ1

˚
V1

J1(r) · ¯̄G(12)
e (r, r′)dV

= −
¨
Si

{(
n1 × ∇ × E1(r)

)
· ¯̄G(12)

e (r, r′) +
(
n1 × E1(r)

)
·
(
∇ × ¯̄G(12)

e (r, r′)
)}
dS

(4.196)
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また，

∇ × ∇ × E2(r) − k2
2E2(r) = 0 (4.197)

∇ × ∇ × ¯̄G(22)
e (r, r′) − k2

2
¯̄G(22)
e (r, r′) = ¯̄Iδ(r − r′) (4.198)

同様にして，F ≡ E2(r)， ¯̄Ge ≡ ¯̄G(22)
e (r, r′)として，領域 #2においてベクトル・ダイア

ディック形式のグリーンの第二定理を用いると，
˚

V2

{
E2(r) ·

(
∇ × ∇ × ¯̄G(22)

e (r, r′)
)

−
(
∇ × ∇ × E2(r)

)
· ¯̄G(22)

e (r, r′)
}
dV

=
˚

V2

{
E2(r) ·

(
k2

2
¯̄G(22)
e (r, r′) + ¯̄Iδ(r − r′)

)
− k2

2E2(r) · ¯̄G(22)
e (r, r′)

}
dV

= E2(r′)

= −
¨
Si

{(
n2 × ∇ × E2(r)

)
· ¯̄G(22)

e (r, r′) +
(
n2 × E2(r)

)
·
(
∇ × ¯̄G(22)

e (r, r′)
)}
dS

(4.199)

よって，

E2(r′) = −
¨
Si

{(
n1 × jωµ2H2(r)

)
· ¯̄G(22)

e (r, r′)

+ E2(r) ·
(
n1 × ∇ × ¯̄G(22)

e (r, r′)
)}
dS (4.200)

ただし，

n1 = −n2 (4.201)
∇ × E2(r) = −jωµ2H2(r) (4.202)

領域 #1，#2の境界条件より，

n1 ×
( ¯̄G(12)

e (r, r′) − ¯̄G(22)
e (r, r′)

)
= 0 (4.203)

n1 ×
(

1
µ1

∇ × ¯̄G(12)
e (r, r′) − 1

µ2
∇ × ¯̄G(22)

e (r, r′)
)

= 0 (4.204)

これより，

E2(r′) = −
¨
Si

{(
n1 × jωµ2H1(r)

)
· ¯̄G(12)

e (r, r′)

+ E1(r) ·
(
n1 × µ2

µ1
∇ × ¯̄G(12)

e (r, r′)
)}
dS

= µ2

µ1

¨
Si

{(
n1 × ∇ × E1(r)

)
· ¯̄G(12)

e (r, r′)

+
(
n1 × E1(r)

)
·
(
∇ × ¯̄G(12)

e (r, r′)
)}
dS (4.205)
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よって，式 (4.196)より，

E2(r′) = µ2

µ1

(
−jωµ1

˚
V1

J1(r) · ¯̄G(12)
e (r, r′)dV

)

= −jωµ2

˚
V1

J1(r) · ¯̄G(12)
e (r, r′)dV (4.206)

4.10.4 領域 #2に電流源がある場合

同様にして，領域 #2に電流源 J2 がある場合は，1と 2を入れ換えて，

E2(r′) = −jωµ2

˚
V2

J2(r) · ¯̄G(22)
e (r, r′)dV (4.207)

E1(r′) = −jωµ1

˚
V2

J2(r) · ¯̄G(21)
e (r, r′)dV (4.208)

4.10.5 第 3種ダイアディック・グリーン関数の対称性

第 3種電界型ダイアディック・グリーン関数の対称性は，次のようになる（導出省略）．

1
µ2

(
¯̄G(21)
e (r′, r)

)T
= 1
µ1

¯̄G(12)
e (r, r′) (4.209)

また，第 3種磁界型ダイアディック・グリーン関数の対称性は，次のようになる（導出省略）．

1
k2

2

(
∇′ × ¯̄G(21)

e (r′, r)
)T

= 1
k2

1
∇ × ¯̄G(12)

e (r, r′) (4.210)

第 3種グリーン関数の対称性などを用いれば，次式が得られる（導出省略）．

E1(r) = −jωµ1

˚
V1

¯̄G(11)
e (r, r′) · J1(r′)dV ′ (4.211)

E2(r) = −jωµ2

˚
V1

¯̄G(21)
e (r, r′) · J1(r′)dV ′ (4.212)

E2(r) = −jωµ2

˚
V2

¯̄G(22)
e (r, r′) · J2(r′)dV ′ (4.213)

E1(r) = −jωµ1

˚
V2

¯̄G(12)
e (r, r′) · J2(r′)dV ′ (4.214)
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CHAPTER 5

モーメント法

　モーメント法は，電磁界の問題を線形代数方程式に帰着させることにより，効率的な数値
解析を可能とする手法である．特に，導体や誘電体による電磁波の散乱解析，アンテナの放
射特性評価，および積分方程式の数値解法など，広範な応用がなされている．ここでは，ま
ずモーメント法の基礎となる線形空間と線形演算子の概念，および重み付き残差法の考え
方から出発し，マトリクス方程式の導出手順を解説する．次に，ガラーキン法やグリーン
関数の導入を経て，線状導体の散乱問題への応用例を示す．さらに，RWG基底関数を用い
た複雑な構造体の解析手法についても述べ，最後に，導体・誘電体複合構造に適用される
PMCHWT積分方程式についても取り上げ，体系的に解説する．

5.1 モーメント法とは

5.1.1 線形空間と演算子

線形作用素あるいは演算子（linear operator）を L，既知の強制関数（known forcing
function）を g，未知関数を f として，

L(f) = g (5.1)

で表される場合を考える．まず，内積（inner product）〈f, g〉あるいはモーメント（moment）
は次の関係を満足する．

〈f, g〉 = 〈g, f〉 (5.2)
〈αf + βg, h〉 = α〈f, h〉 + β〈g, h〉 (5.3)

〈f∗, f〉
{
> 0 (f 6= 0)
= 0 (f = 0) (5.4)
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ただし，α，β はスカラー，∗は複素共役を示す．また，随伴作用素（adjoint operator）La

は次式によって定義される．

〈Lf, g〉 = 〈f, Lag〉 (5.5)

ここで，La = Lなら作用素は自己随伴（self-adjoint）であるという．f が実数ならば，Lf
もまた実数である．f が実数あるいは複素数のとき，〈f∗, Lf〉 > 0 (f 6= 0) なら演算子は
正定値（positive definite），〈f∗, Lf〉 ≥ 0 (f 6= 0) なら半正定値（positive semidefinite），
〈f∗, Lf〉 < 0 (f 6= 0)なら負定値（negative definite）であるという．いま，任意の g に対
して L(f) = g の解 f が唯一決まるとき，逆作用素（inverse operator）L−1 より，

f = L−1(g) (5.6)

例えば，変域 0 ≤ x ≤ 1 において定義される g(x)，f(x)について，

−d2f

dx2 = g(x) (5.7)

f(0) = f(1) = 0 (5.8)

とする境界値問題を考えよう．演算子 Lは，

L = − d2

dx2 (5.9)

これより，与式は，

L(f) = g(x) (5.10)

この問題における内積（inner product）〈f, g〉は，例えば，

〈f, g〉 =
ˆ 1

0
f(x)g(x)dx (5.11)

あるいは，

〈f, g〉 =
ˆ 1

0
w(x)f(x)g(x)dx (5.12)

ただし，x(x) > 0は任意の重み関数（arbitrary weighting function）を示す．式 (5.11)よ
り，式 (5.10)と g の内積は，

〈Lf, g〉 =
ˆ 1

0
L(f)g(x)dx =

ˆ 1

0

(
−d2f

dx2

)
g dx (5.13)

部分積分して，

〈Lf, g〉 =
[(

− df

dx

)
g

]1

0
−
ˆ 1

0

(
− df

dx

)
dg

dx
dx = −

[
df

dx
g

]1

0
+
ˆ 1

0

df

dx

dg

dx
dx (5.14)
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上式の第 2項をさらに部分積分して，
ˆ 1

0

df

dx

dg

dx
dx =

[
f
dg

dx

]1

0
−
ˆ 1

0
f
d2g

dx2dx (5.15)

これより，式 (5.14)の内積は，

〈Lf, g〉 = −
[
df

dx
g

]1

0
+
[f dg

dx

]1

0
−
ˆ 1

0
f
d2g

dx2dx


=
ˆ 1

0
f

(
−d2g

dx2

)
dx+

[
f
dg

dx
− df

dx
g

]1

0
(5.16)

上式の第 2項は，境界条件の項である．いま，

g(0) = g(1) = 0 (5.17)

のとき，この項はゼロになり，

〈Lf, g〉 =
ˆ 1

0
f

(
−d2g

dx2

)
dx

= 〈f, Lag〉 (5.18)

このとき，

L = La = − d2

dx2 (5.19)

ゆえ，この作用素は自己随伴である．また，

〈f∗, Lf〉 =
ˆ 1

0
f∗
(

−d2f

dx2

)
dx =

[
f∗
(

− df

dx

)]1

0
−
ˆ 1

0

df∗

dx

(
− df

dx

)
dx =

ˆ 1

0

df∗

dx

df

dx
dx

=
ˆ 1

0

∣∣∣∣∣ dfdx
∣∣∣∣∣
2

dx (5.20)

したがって，f が複素数であっても Lは正定値である．

5.1.2 重み付き残差法

電磁界解析では，L は微積分演算子（integro-differential operator），g は既知の駆動関
数（known driving function），例えば，与えられた入射波，f は解くべき未知電流などであ
る．ここでは，f を基底関数（basis functions）fn で次のように展開する．

f '
N∑
n=1

anfn ≡ f̄ (5.21)
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ただし，an は未知係数（unknown coefficients）を示す．f̄ は f の近似解ゆえ，次のように
残差 Rが生じる．

R = g − L(f̄) = g −
N∑
n=1

anL(fn) (5.22)

この残差 Rに重みをかけて領域全体で積分したものがゼロになるように，
ˆ
wmRdΩ =

ˆ
wm

{
g − L(f̄)

}
dΩ = 0 (m = 1, 2, · · · , N) (5.23)

とし，未知定数 an (n = 1, 2, · · · , N)を定める方法が重み付き残差法（method of weighted
residuals）である．ただし，wm は重み関数（weighting function）を示す．

5.1.3 マトリクス方程式

演算子 Lは線形ゆえ，

L(f̄) =
N∑
n=1

anL(fn) (5.24)

これより，式 (5.23)は，
ˆ
wm

g −
N∑
n=1

anL(fn)

 dΩ = 0 (m = 1, 2, · · · , N) (5.25)

あるいは，
N∑
n=1

an

ˆ
wmL(fn)dΩ =

ˆ
wmgdΩ (m = 1, 2, · · · , N) (5.26)

内積を式 (5.11)のように表すと，

N∑
n=1

an〈wm, Lfn〉 = 〈wm, g〉 (m = 1, 2, · · · , N) (5.27)

これは次のように行列表示できる．

[Z]a = b (5.28)

ここで，[Z]は N ×N 正方行列で，

[Z] =


z11 z12 · · · z1N
z21 z22 · · · z2N
... ...
zN1 zN2 · · · zNN

 =


〈w1, Lf1〉 〈w1, Lf2〉 · · · 〈w1, LfN〉
〈w2, Lf1〉 〈w2, Lf2〉 · · · 〈w2, LfN〉

... ...
〈wN , Lf1〉 〈wN , Lf2〉 · · · 〈wN , LfN〉


(5.29)
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行列要素 zmn は，

zmn =
ˆ
wmL(fn)dΩ = 〈wm, Lfn〉 (5.30)

また，列ベクトル a，bは，

a =


a1
a2
...
aN

 , b =


b1
b2
...
bN

 =


〈w1, g〉
〈w2, g〉

...
〈wN , g〉

 (5.31)

列ベクトルの要素 bm は，

bm =
ˆ
wmgdΩ = 〈wm, g〉 (5.32)

行列 [Z]の逆行列 [Z]−1 が存在する場合，

a = [Z]−1b (5.33)

これより，f̄ は，

f̄ =
N∑
n=1

anfn = fTa = fT [Z]−1b (5.34)

ここで，fT は f の転置を示し，

f =


f1
f2
...
fN

 (5.35)

基底関数については，区分的基底関数（local or subsectional basis functions）と全領域基
底関数（global or entire-domain basis functions）があり，スカラーだけでなくベクトルで
表される場合もある．また，積分の次元については，線状素子の散乱問題などは 1次元の線
積分，境界面上の等価波源に対する問題では 2次元の面積分，分布波源に対する電磁波問題
では 3次元の体積積分となる．電磁界解析の分野では，このように線形代数方程式に変換し
て行列計算によって統一的に解く方法の総称をモーメント法（method of moments: MoM）
と呼んでいる*1．このとき，重み関数は，試行関数（testing function）ともいう．現在で

*1 次のような文献で電磁界の積分方程式の解法として有効であることが示され，有名になった．
• Roger F. Harrington, “Matrix Methods for field problems,” Proc. of IEEE, vol.55, no.2, pp.136-149

(1967), doi: 10.1109/PROC.1967.5433.
• Roger F. Harrington, “Field Computation by Moment Methods,” Chapter 4. Wire antennas and

scatters, Wiley-IEEE Press (1993), ISBN-13: 978-0780310148.
• “Method of Moments in Antennas and Scattering,” R. C. Hansen, Editor, Artech House (1990),

ISBN-13: 978-0890064665.
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は，電磁界が満足する積分方程式を求めてこのように計算する方法を単に，積分方程式法
（integral equation methods）ともいう．

5.2 ガラーキン法

試行関数として基底関数と同じ関数を用いた方法はガラーキン法（method of Galerkin）
といい，よく用いられる方法である．

wm(r) = fm(r) (5.36)

問題

変域 0 ≤ x ≤ 1 において定義される f(x)に関する境界値問題

−d2f

dx2 = 1 + 4x2 (5.37)

f(0) = f(1) = 0 (5.38)

において，(a) 解析的な解，(b) ガラーキン法を用いた場合のモーメント法のマトリク
ス方程式を求めよ．

解答

(a) 与式の両辺を xで不定積分すると，
ˆ

−d2f

dx2 dx =
ˆ

(1 + 4x2)dx

∴ − df

dx
= x+ 4

3x
3 + C1 (5.39)

ただし，C1 は積分定数を示す．さらに，上式の両辺を xで不定積分すると，
ˆ

− df

dx
dx =

ˆ (
x+ 4

3x
3 + C1

)
dx

∴ f(x) = −x2

2 − x4

3 − C1x− C2 (5.40)

ただし，C1 は積分定数を示す．C1，C2 は境界条件より決定され，

f(0) = −C2 = 0 (5.41)

f(1) = −1
2 − 1

3 − C1 = 0 (5.42)

これより，

C1 = −5
6 , C2 = 0 (5.43)
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よって，

f(x) = −x2

2 − x4

3 + 5
6x (5.44)

解答

(b) まず，境界条件を満足する基底関数 fn

fn = x− xn+1 (5.45)

を考え，解くべき未知関数 f の近似値を次のように展開して表す．

f̄ =
N∑
n=1

anfn =
N∑
n=1

an(x− xn+1) (5.46)

ガラーキン法より，試行関数 wm は，

wm = fm = x− xm+1 = x(1 − xm) (5.47)

よって，ガラーキン法を用いたマトリクス方程式は，

[Z]a = b (5.48)

ここで，[Z]は N ×N 正方行列で，

[Z] =


z11 z12 · · · z1N
z21 z22 · · · z2N
... ...
zN1 zN2 · · · zNN



=


〈f1, Lf1〉 〈f1, Lf2〉 · · · 〈f1, LfN〉
〈f2, Lf1〉 〈f2, Lf2〉 · · · 〈f2, LfN〉

... ...
〈fN , Lf1〉 〈fN , Lf2〉 · · · 〈fN , LfN〉

 (5.49)

また，列ベクトル a，bは，

g(x) = 1 + 4x2 (5.50)

とおくと，

a =


a1
a2
...
aN

 , b =


b1
b2
...
bN

 =


〈f1, g〉
〈f2, g〉

...
〈fN , g〉

 (5.51)
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これより，行列 [Z]の要素 zmn は，

zmn = 〈fm, Lfn〉 =
ˆ 1

0
fm

(
−d2fn
dx2

)
dx (5.52)

ここで，

fm = x− xm+1 (5.53)
dfn
dx

= d

dx

(
x− xn+1

)
= 1 − (n+ 1)xn (5.54)

d2fn
dx2 = d

dx
{1 − (n+ 1)xn} = −n(n+ 1)xn−1 (5.55)

より，

zmn =
ˆ 1

0

(
x− xm+1

)
n(n+ 1)xn−1dx = n(n+ 1)

ˆ 1

0

(
xn − xm+n

)
dx

= n(n+ 1)
[
xn+1

n+ 1 − xm+n+1

m+ n+ 1

]1

0
= n(n+ 1)

( 1
n+ 1 − 1

m+ n+ 1

)
= mn

m+ n+ 1 (5.56)

また，列ベクトルの要素 bm は，

bm = 〈fm, g〉 =
ˆ 1

0
fmgdx =

ˆ 1

0

(
x− xm+1

) (
1 + 4x2

)
dx

=
ˆ 1

0

(
x+ 4x3 − xn+1 − 4xm+3

)
dx =

[
x2

2 + x4 − xm+2

m+ 2 − 4xm+4

m+ 4

]1

0

= 1
2 + 1 − 1

m+ 2 − 4
m+ 4 = m(3m+ 8)

2(m+ 2)(m+ 4) (5.57)

5.3 グリーン関数

5.3.1 逆作用素

逆作用素 L−1 は，グリーン関数を用いて次のようにして求めることができる．

f = L−1(g) =
ˆ
G(x, x′)g(x′)dx′ (5.58)
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5.3.2 グリーン関数の導出例

変域 0 ≤ x ≤ 1 において定義される f(x)に関する境界値問題

−d2f

dx2 = 1 + 4x2 (5.59)

f(0) = f(1) = 0 (5.60)

において，グリーン関数を求めてみよう．まず，グリーン関数G(x, x′)満たすべき方程式は，

−d2G(x, x′)
dx2 = δ(x− x′) (5.61)

このとき，グリーン関数の境界条件は次のようになる．

G(0, x′) = G(1, x′) = 0 (5.62)

いま，x 6= x′ の場合を考えると，0 ≥ x > x′，x′ > x ≥ 1のとき，

−d2G(x, x′)
dx2 = 0 (5.63)

両辺を xで不定積分すると，
ˆ

−d2G(x, x′)
dx2 dx = −dG(x, x′)

dx
= K1 (5.64)

ただし，K1 は積分定数を示す．さらに，xで不定積分すると，
ˆ

−dG(x, x′)
dx

dx = −G(x, x′) = K1x+K2 (5.65)

ただし，K1 は積分定数を示す．これより，

G(x, x′) =
{
C1x+ C2 (0 ≥ x > x′)
C ′

1x+ C ′
2 (x′ > x ≥ 1) (5.66)

ただし，C1，C2，C ′
1，C ′

2 は定数である．境界条件より，

G(0, x′) = C2 = 0, G(1, x′) = C ′
1 + C ′

2 = 0 (5.67)
∴ C ′

2 = −C ′
1 (5.68)

よって，

G(x, x′) =
{
C1x (0 ≥ x > x′)
C ′

1(x− 1) (x′ > x ≥ 1) (5.69)

x = x′ におけるグリーン関数の連続条件より，

C1x
′ = C ′

1(x′ − 1) (5.70)
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また，式 (5.61)の両辺を x = x′ 近傍で積分すると，τ � 1 として，
ˆ x+τ

x′−τ
−d2G(x, x′)

dx2 dx =
ˆ
δ(x− x′)dx

−
[
dG(x, x′)

dx

]x+τ

x′−τ
= 1 (5.71)

ここで，

dG(x, x′)
dx

=
{
C1 (0 ≥ x > x′)
C ′

1 (x′ > x ≥ 1) (5.72)

ゆえ，

C ′
1 − C1 = −1

∴ C1 = C ′
1 + 1 (5.73)

式 (5.70)−x′×式 (5.73)より，

C ′
1 = −x′ (5.74)

これより，

C1 = −x′ + 1 (5.75)

よって，グリーン関数 G(x, x′)は，

G(x, x′) =
{
x(1 − x′) (0 ≥ x > x′)
(1 − x)x′ (x′ > x ≥ 1) (5.76)

5.4 線状導体の散乱問題（点整合法）

線状導体の散乱問題に対して，まず，点整合法を取り上げ説明する*2．

5.4.1 差分近似

面電流 J，および面電荷密度 σ を用いて，散乱電界 Es は次式で与えられる．

Es = −jωA − ∇Φ (5.77)

*2 Roger F. Harrington, “Field Computation by Moment Methods,” Chapter 4. Wire antennas and
scatters, Wiley-IEEE Press (1993), ISBN-13: 978-0780310148.
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ここで，Aはベクトルポテンシャル，Φはスカラポテンシャルを示し，

A = µ

˛
S

J(r′)G0(r, r′)dS′ (5.78)

Φ = 1
ε

˛
S

σ(r′)G0(r, r′)dS′ (5.79)

ただし，G0(r, r′)は自由空間の３次元スカラグリーン関数を示し，

G0(r, r′) = e−jk|r−r′|

4π|r − r′|
(5.80)

また，連続の式は，

∇ · J = −jωσ (5.81)

散乱体が完全導体の場合，入射電界を Ei，導体表面の法線ベクトルを nとおくと，導体表
面 S 上の境界条件は次のようになる．

n × (Ei + Es) = 0 (on S) (5.82)

いま，導体が十分細い場合を考え，次のような細線近似を行う．

• 電流は線状導体中心軸方向成分（単位ベクトル ul）のみをもつ．
• 電流および電荷は導体表面ではなく，仮想的に線状導体中心軸上に分布する．J(r) =

I(l) = I(l)ul．たたし，l は中心軸に沿う距離（座標成分）を示す．
• 電流および電荷は，パルス状で微小素子（長さ ∆l）からなる．
• 電界に対する境界条件は，実際の導体表面（半径 a の円筒表面）で考えた上で，適
宜，近似を行う．

これらの近似は，ハレンの積分方程式の定式化において用いたものである．これより，

A = µ

ˆ
l

I(l′)ul′G0 dl
′ (5.83)

Φ = 1
ε

ˆ
l

σ(l′)G0 dl
′ (5.84)

また，

σ = ∇ · J

−jω
= − 1

jω
∇ ·

(
I(l′)ul

)
= − 1

jω

∂I

∂l′
(5.85)

を用いて散乱電界 Es が求められる．また，境界条件より，電界の軸方向成分については，

−Ei · ul = Es · ul

=
(

− jωA − ∇Φ
)

· ul (on S) (5.86)
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ここで，Ei，Aの l成分を各々 Ei,l，Al とおくと，

−Ei,l = −jωAl − ∂Φ
∂l

(on S) (5.87)

線状導体を微小長の素子に分割し，微分を差分近似（中心差分）すると，

Φ(m) ' Φ(m+) − Φ(m−)
∆lm

(5.88)

ただし，∆lm はm番目の導体素子の長さ，mはその導体素子の中心，m± は両端の位置に
各々対応する．これより，m番目の微小導体中心における値は次のようになる．

−Ei,l(m) ' −jωAl(m) − Φ(m+) − Φ(m−)
∆lm

on (m番目の素子) (5.89)

A(m) ' µ
∑
n

I(n)
ˆ

∆ln
G0(rm, rn) dln (5.90)

m番目の微小導体の両端m± において，

Φ(m±) ' 1
ε

∑
n

σ(n±)
ˆ

∆ln±

G0(rm±, rn±) dln± (5.91)

ここで，n番目の微小導体の両端 n± の電荷密度 σ(n±)は，式 (5.85)を差分近似して，

σ(n+) ' − 1
jω

I(n+ 1) − I(n)
∆ln+

(5.92)

σ(n−) ' − 1
jω

I(n) − I(n− 1)
∆ln−

(5.93)

まず，次の積分を実行しよう．

ψ(n,m) ≡ 1
∆ln

ˆ
∆ln

G0(rm, rn) dln (5.94)

ここで，n番目の微小素子の中心を原点，素子の軸方向を z 軸にとるローカルな円筒座標系
(ρ, φ, z)を考えると，位置ベクトル rn の点の座標は (0, 0, z)となる．一方，m番目の微小
素子の rm（観測点）の座標を (ρm, φm, zm)とすると，m 6= nのとき，

Rm = |rm − rn| =
√
ρ2
m + (zm − z)2

=
√
ρ2
m + z2

m − 2zmz + z2 (5.95)

ここで，原点から rm までの距離を R0m とおくと，

R0m =
√
ρ2
m + z2

m (5.96)
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より，

Rm =
√
R2

0m − 2zmz + z2 = R0m

√√√√1 + −2zmz + z2

R2
0m

' R0m

(
1 + 1

2 · −2zmz
R2

0m

)

= R0m − zm
R0m

z (5.97)

これより，

ψ(n,m) = 1
∆ln

ˆ
∆ln

e−jkRm

4πRm
dz ' 1

∆ln
e−jkR0m

4πR0m

ˆ
∆ln

e
jk zm

R0m
z
dz (5.98)

積分項について，

ˆ
∆ln

e
jk zm

R0m
z
dz =

ejk zm
R0m

z

jk zm

R0m


∆ln

2

z=− ∆ln
2

= 1
jk zm

R0m

(
e
jk zm

R0m

∆ln
2 − e

−jk zm
R0m

∆ln
2

)

= ∆ln
sin

(
k zm

R0m

∆ln
2

)
k zm

R0m

∆ln
2

(5.99)

よって，

ψ(n,m) ' e−jkR0m

4πR0m

sin
(
k zm

R0m

∆ln
2

)
k zm

R0m

∆ln
2

' e−jkR0m

4πR0m
(m 6= n) (5.100)

次に，m = nのとき，(ρm, φm, zm) = (a, φn, 0)．また，Rn =
√
a2 + z2 のとき，

e−jkRn ' 1 − jkRn (5.101)

で近似すると，

ψ(n, n) = 1
∆ln

ˆ
∆ln

e−jkRn

4πRn
dz = 1

4π∆ln

ˆ
∆ln

1 − jkRn
Rn

dz

= 1
4π∆ln

(ˆ
∆ln

dz

Rn
− jk

ˆ
∆ln

dz

)
(5.102)

153



上式の第 1項の積分は，∆ln � aのとき，
ˆ

∆ln

dz

Rn
=
ˆ ∆ln

2

− ∆ln
2

dz√
a2 + z2

=
[

log |z +
√
z2 + a2|

]∆ln
2

− ∆ln
2

= log

∣∣∣∣∣∣∣
∆ln
2 +

√√√√(∆ln
2

)2

+ a2

∣∣∣∣∣∣∣− log

∣∣∣∣∣∣∣−
∆ln
2 +

√√√√(−∆ln
2

)2

+ a2

∣∣∣∣∣∣∣

= log

∣∣∣∣∣∆ln2 +
√(

∆ln
2

)2
+ a2

∣∣∣∣∣∣∣∣∣∣−∆ln
2 +

√(
∆ln

2

)2
+ a2

∣∣∣∣∣
= log

∣∣∣∣∣∆ln2 +
√(

∆ln
2

)2
+ a2

∣∣∣∣∣
2

a2

= 2 log

∣∣∣∣∣∣∣
∆ln
2a +

√√√√(∆ln
2a

)2

+ 1

∣∣∣∣∣∣∣ ' 2 log
(

∆ln
2a + ∆ln

2a

)
= 2 log

(
∆ln
a

)
(5.103)

よって，

ψ(n, n) ' 1
4π∆ln

{
2 log

(
∆ln
a

)
− jk∆ln

}
=

log
(

∆ln
a

)
2π∆ln

− jk

4π (5.104)

また，

Φ(m+) ' 1
ε

∑
n

{
− 1
jω

I(n+ 1) − I(n)
∆ln+

}ˆ
∆ln+

G0(rm+, rn+) dln+

= − 1
jωε

N∑
n=1

{
I(n+ 1) − I(n)

}
ψ(n+,m+)

= − 1
jωε

[{
I(2) − I(1)

}
ψ(1+,m+) +

{
I(3) − I(2)

}
ψ(2+,m+)

+ · · · +
{
I(n) − I(n− 1)

}
ψ((n− 1)+,m+) +

{
I(n+ 1) − I(n)

}
ψ(n+,m+)

+ · · · +
{
I(N) − I(N − 1)

}
ψ((N − 1)+,m+) +

{
I(N + 1) − I(N)

}
ψ(N+,m+)

]
= − 1

jωε

[
I(1)ψ(1+,m+) +

{
I(n)ψ((n− 1)+,m+) − I(n)ψ(n+,m+)

}
+ I(N + 1)ψ(N+,m+)

]

' − 1
jωε

N∑
n=1

{
I(n)ψ((n− 1)+,m+) − I(n)ψ(n+,m+)

}

= 1
jωε

N∑
n=1

I(n)
{

− ψ(n−,m+) + ψ(n+,m+)
}

(5.105)
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同様にして，

Φ(m−) ' 1
jωε

N∑
n=1

I(n)
{

− ψ(n−,m−) + ψ(n+,m−)
}

(5.106)

また，

A(m) ' µ
∑
n

I(n)ul,n

ˆ
∆ln

G0(rm, rn) dln

= µ
∑
n

I(n)∆lnψ(n,m) (5.107)

ただし，∆ln ≡ ∆lnul,n．これより，A(m)の素子に沿う成分 Al(m)は，

Al(m) = µ
∑
n

I(n)∆ln · ul,mψ(n,m) (5.108)

よって，式 (5.89)に代入すると，

Ei,l(m) = 1
∆lm

∑
n

[
jωµ∆ln · ∆lmψ(n,m)

+ 1
jωε

{
ψ(n+,m+) − ψ(n−,m+) − ψ(n+,m−) + ψ(n−,m−)

}]
I(n) (5.109)

ここで，

Vm ≡ Ei,l(m)∆lm (5.110)
zmn ≡ jωµ∆ln · ∆lmψ(n,m)

+ 1
jωε

{
ψ(n+,m+) − ψ(n−,m+) − ψ(n+,m−) + ψ(n−,m−)

}
(5.111)

とおくと，

Vm =
∑
n

zmnI(n) (m = 1, 2, · · · ) (5.112)

行列表示すると，

V = [Z]I (5.113)

よって，

I = [Z]−1V = [Y ]V (5.114)

ただし，

[Y ] = [Z]−1 (5.115)
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5.5 放射および散乱特性

積分方程式の数値計算によって得られるインピーダンス行列から，アンテナの放射および
散乱特性を解析する方法について説明する*3．

5.5.1 遠方放射電界

遠方領域に観測点 (r0, θ, φ)をおくと，遠方近似したベクトルポテンシャル

A ' µ
e−jkr0

4πr0

∑
n

I(n)∆lne
jk·rn (5.116)

が得られ，遠方放射電界 E は，次のように近似できる．

E ' −jω
{
(A · uθ)uθ + (A · uφ)uφ

}
(5.117)

ただし，r0 はアンテナの座標原点から観測点までの距離，rn は n番目の導体素子中心の位
置ベクトル，kは波数ベクトル，uθ，uφ は各々，θ，φ方向に沿う単位ベクトルを示す．し
たがって，放射電界の成分 Eθ，Eφ は，

E(θ
φ

) = ωµe−jkr0

j4πr0

∑
n

(
ejk·rnu(θ

φ

) · ∆ln
)
I(n) = ωµe−jkr0

j4πr0
V t
r,
(

θ
φ

)I
= ωµe−jkr0

j4πr0
V t
r,
(

θ
φ

)[Y ]V (5.118)

ただし，V は列ベクトル，V t
r,θ，V t

r,φ は行ベクトル（列ベクトルの転置）を示し，その要素
Vθ,n，Vφ,n は，

Vθ,n = ejk·rnuθ · ∆ln (5.119)
Vφ,n = ejk·rnuφ · ∆ln (5.120)

5.5.2 アンテナ利得

トータル電力 Pt は，電流の要素 I(n) の複素共役 I∗(n) からなる列ベクトルを I∗ とお
くと，

Pt = Re
(

V tI∗
)

= Re
(

V t[Y ∗]V ∗
)

(5.121)

*3 Roger F. Harrington, “Field Computation by Moment Methods,” Chapter 4. Wire antennas and
scatters, Wiley-IEEE Press (1993), ISBN-13: 978-0780310148.
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ただし，V t は V の転置（共役をとらない）を示す．これより，アンテナ利得 g(θ
φ

)(θ, φ)は，

g(θ
φ

)(θ, φ) = 4πr2
0

η

|E(θ
φ

)(θ, φ)|2

Pt
= ηk2

4π

∣∣∣∣V t
r,
(

θ
φ

)[Y ]V
∣∣∣∣2

Re
(

V t[Y ∗]V ∗
) (5.122)

ここで，η =
√
µ/εは自由空間の波動インピーダンスを示す．

5.5.3 アンテナの入力アドミタンス

1点給電の線状アンテナの場合，一つの微小素子（i番目）の励振電圧を Vi 6= 0とおき，
それ以外はゼロとおくと，電流 I の要素 Im は，

Im = ymiVi (m = 1, 2, · · · ) (5.123)

ただし，ymi は [Y ]の要素を示す．よって，単位電圧 Vi = 1とすると，電流は直接 ymi に
よって与えられる．このとき，この給電点における入力アドミタンス Y

IN
は，

Y
IN

= Ii
Vi

= yii (5.124)

また，トータル電力 Pt は，

Pt = Re
(
|Vi|2yii

)
(5.125)

5.5.4 散乱断面積

物体に平面波が入射したとき，ある方向 (θ, φ)の散乱波の強さが，入射波の到来方向に垂
直な断面積 σ [m2]内に含まれる入射電力を全方向に一様に散乱した場合の強さと同じにな
るような σ をその物体のその方向の散乱断面積（scattering cross-section）という．いま，
入射平面波を，

Ei = ute
−jk·rn ,

∣∣∣Ei

∣∣∣ = 1 (5.126)

散乱電界を Es，散乱体から観測点までの距離を rr とおくと，

∣∣∣Es,(θ
φ

)∣∣∣2 = σ|Ei|2

4πr2
r

= σ

4πr2
r

(5.127)

ここで，積分方程式の数値計算により得られる電界成分は，

Es,
(

θ
φ

) = ωµe−jkr0

j4πr0
V t
r,
(

θ
φ

)[Y ]V (5.128)
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だたし，V t は入射平面波を表す列ベクトルで，その要素 Vn は次のようになる（アンテナ
の解析とは異なる点）．

Vn = Ei · ∆ln = e−jk·rnut · ∆ln (5.129)

ただし，k は入射平面波の波数ベクトル，ut はその電界の偏波方向に沿う単位ベクトルを
示す．これより，散乱断面積 σ は，

σ = 4πr2
r

∣∣∣Es,(θ
φ

)∣∣∣2 = η2k2

4π

∣∣∣∣V t
r,
(

θ
φ

)[Y ]V
∣∣∣∣2 (5.130)

また，トータル散乱断面積（Total scattering cross-section）σt は，入射波の電力密度と散
乱波全電力の比で定義され，次のようになる．

σt = Pt
|Ei|2
η

= ηPt = η <
[
V t[Y ∗]V ∗

]
(5.131)

5.6 線状導体の散乱問題（ガラーキン法）

5.6.1 マトリクス方程式

ベクトルポテンシャルを基にして得られる散乱電界Esの積分表示式は，次のようになる．

Es(r) = −jωµ
(ˆ

V

G(r, r′)J(r′)dV ′ + 1
k2 ∇∇ ·

ˆ
V

G(r, r′)J(r′)dV ′
)

(5.132)

入射電界を Ei(r)，線状電流を I(r)とおくと，線状導体（積分路 L）に沿う電界の境界条
件より，

−Ei · ut(r) = Es · ut(r) (on S)

= −jωµ
(ˆ

L

G(r, r′)I(r′)dl′ + 1
k2 ∇∇ ·

ˆ
L

G(r, r′)I(r′)dl′
)

· ut(r)

(5.133)

いま，線状電流 I を次のように展開して表す．

I = I(l)ut(r) '
∑
n

anfn(r) (5.134)
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ただし，r は位置ベクトル，ut は線状導体の接線（単位）ベクトル，fn は区分的三角波状
の基底関数，an は未知係数を示す．これより，

1
jωµ

Ei · ut(r) =
{(

1 + 1
k2 ∇∇·

)ˆ
L

G(r, r′)I(r′)ut(r′)dl′
}

· ut(r)

=
{(

1 + 1
k2 ∇∇·

)ˆ
L

G(r, r′)
(∑

n

anfn(r′)
)
dl′
}

· ut(r)

=
{∑

n

an

(
1 + 1

k2 ∇∇·
)ˆ

L

G(r, r′)fn(r′)dl′
}

· ut(r) (5.135)

ベクトル表示して，

− j

ωµ

(
Ei · ut(r)

)
ut =

[{∑
n

an

(
1 + 1

k2 ∇∇·
)ˆ

L

G(r, r′)fn(r′)dl′
}

· ut(r)
]

ut

(5.136)

両辺に fm(r)のスカラ積をとって，積分すると，ˆ
L

− j

ωµ

(
Ei(r) · ut(r)

)(
ut(r) · fm(r)

)
dl

=
ˆ
L

[{∑
n

an

(
1 + 1

k2 ∇∇·
)ˆ

L

G(r, r′)fn(r′)dl′
}

· ut(r)
] (

ut(r) · fm(r)
)
dl

(5.137)

いま，ut に直交する単位ベクトルを u1，u2 とすると，

Ei(r) · fm(r) =
(
Ei · ut

)(
fm · ut

)
+
(
Ei · u1

)(
fm · u1

)
+
(
Ei · u2

)(
fm · u2

)
=
(
Ei · ut

)(
fm · ut

)
(5.138)

また，

fn(r′) · fm(r) =
(
fn(r′) · ut(r)

)(
fm(r) · ut(r)

)
+
(
fn(r′) · u1(r)

)(
fm(r) · u1(r)

)
+
(
fn(r′) · u2(r)

)(
fm(r) · u2(r)

)
=
(
fn(r′) · ut(r)

)(
fm(r) · ut(r)

)
(5.139)

より，

− j

ωµ

ˆ
fm

Ei(r) · fm(r) dl (m = 1, 2, · · · )

=
∑
n

an

ˆ
fm

{(
1 + 1

k2 ∇∇·
) ˆ

L

G(r, r′)fn(r′)dl′
}

· fm(r) dl (5.140)

ここで，

bm ≡ − j

ωµ

ˆ
fm

Ei(r) · fm(r) dl (5.141)

zmn ≡
ˆ
fm

{(
1 + 1

k2 ∇∇·
) ˆ

fn

G(r, r′)fn(r′)dl′
}

· fm(r) dl (5.142)
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とおくと，

bm =
∑
n

zmn an (m = 1, 2, · · · ) (5.143)

行列表示すると，

V = [Z]I (5.144)

よって，

I = [Z]−1V = [Y ]V (5.145)

ただし

[Y ] = [Z]−1 (5.146)

5.6.2 マトリクス要素の計算

マトリクス要素 zmn について，第 2項の積分を Iz2 とおき，さらに計算に適した形に変
形していく．

Iz2 ≡
ˆ
fm

fm(r) ·
(

∇∇ ·
ˆ
fn

G(r, r′)fn(r′)dl′
)
dl

=
ˆ
fm

fm(r) ·
{

∇
ˆ
fn

∇ ·
(
G(r, r′)fn(r′)

)
dl′
}
dl (5.147)

ベクトル公式∇ ·
(
Gfn

)
= fn · ∇G+G

(
∇ · fn(r′)

)
において，この式の第 2項はゼロゆえ，

Iz2 =
ˆ
fm

fm(r) ·
(

∇
ˆ
fn

fn(r′) · ∇G(r, r′)dl′
)
dl (5.148)

グリーン関数の対称性∇G(r, r′) = −∇′G(r, r′) より，

Iz2 = −
ˆ
fm

fm(r) ·
(

∇
ˆ
fn

fn(r′) · ∇′G(r, r′)dl′
)
dl (5.149)

また，ベクトル公式∇′ ·
(
Gfn

)
= fn · ∇′G+G

(
∇′ · fn

)
より，

Iz2 = −
ˆ
fm

fm(r) ·
[
∇
ˆ
fn

{
∇′ ·

(
G(r, r′)fn(r′)

)
−G(r, r′)∇′ · fn(r′)

}
dl′
]
dl

(5.150)

上式の第 1項について，積分範囲を全空間にとった後，ガウスの発散定理より体積積分を面
積分に変換すると，その面上では被積分関数はゼロとなり，第 1項はゼロである．よって，

Iz2 =
ˆ
fm

fm(r) ·
(

∇
ˆ
fn

G(r, r′)∇′ · fn(r′)dl′
)
dl (5.151)
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いま，

S(r) ≡
ˆ
fn

G(r, r′)∇′ · fn(r′)dl′ (5.152)

とおくと，

Iz2 =
ˆ
fm

fm(r) · ∇S(r)dl (5.153)

また，ベクトル公式∇ ·
(
fmS

)
= S

(
∇ · fm

)
+ fn · ∇S より，

Iz2 =
ˆ
fm

∇ ·
(
fm(r)S(r)

)
dl −

ˆ
fm

S(r)∇ · fm(r)dl (5.154)

上式の第 1 項は，ガウスの発散定理より体積積分を面積分に変換できゼロとなる．した
がって，

Iz2 = −
ˆ
fm

(
∇ · fm(r)

)
S(r)dl

= −
ˆ
fm

(
∇ · fm(r)

){ˆ
fn

G(r, r′)
(

∇′ · fn(r′)
)
dl′
}
dl (5.155)

よって，zmn の別の表現として次式を得る．

zmn =
ˆ
fm

fm(r) ·
(ˆ

fn

G(r, r′)fn(r′)dl′
)
dl

− 1
k2

ˆ
fm

(
∇ · fm(r)

){ˆ
fn

G(r, r′)
(

∇′ · fn(r′)
)
dl′
}
dl (5.156)

これは，グリーン関数 G(r, r′)に ∇，∇′ が作用しないようにした表示式となっていること
が特徴である．

5.6.3 基底関数

基底関数 fn として，区分的な関数 fn = fn(l)ut,n を考えると，

zmn =
ˆ
fm

fmut,m ·
(ˆ

fn

G(r, r′)fnut,ndl
′
)
dl − 1

k2

ˆ
fm

∂fm
∂l

{ˆ
fn

G(r, r′)∂fn
∂l′

dl′
}
dl

(5.157)

ただし，各セグメントは各々直線状導体で近似している．ここで，

S1,mn(l) ≡
ˆ
fn

G(r, r′)fn(l′)dl′ (5.158)

S2,mn(l) ≡
ˆ
fn

G(r, r′)∂fn(l′)
∂l′

dl′ (5.159)
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とおくと，

zmn =
(
ut,m · ut,n

) ˆ
fm

fm(l)S1,mn(l)dl − 1
k2

ˆ
fm

∂fm(l)
∂l

S2,mn(l)dl (5.160)

ただし，一般に S1,mn(l)，S2,mn(l)の定積分は解析的に行われる．基底関数 fn として，区
分的な三角波状の関数（piecewise triangular function）があり，次式で定義される

fn(l) =


l − ln−1

ln − ln−1
(ln−1 ≤ l ≤ ln)

ln+1 − l

ln+1 − ln
(ln ≤ l ≤ ln+1)

(5.161)

これより，

∇ · fn = ∇ ·
(
fn(l)ut,n

)
=
(
∇fn(l)

)
· ut,n

= ∂fn
∂l

=


1

ln − ln−1
(ln−1 ≤ l ≤ ln)

−1
ln+1 − ln

(ln ≤ l ≤ ln+1)
(5.162)

5.7 Rao-Wilton-Glisson (RWG) 基底関数

5.7.1 RWG基底関数の定義

完全導体からなる３次元構造の散乱体を考えると，導体表面 Sに沿う電界成分（添字 tan）
の境界条件より，

−Ei,tan = Es,tan =
(

− jωA − ∇Φ
)

tan
(on S) (5.163)

まず，電流分布 J を次のように展開して近似する．

J(r) '
N∑
n=1

Infn(r) (5.164)

ただし，In は未知スカラ係数，fn は電流分布の基底関数（basis function）を示し，電流分
布 J および基底関数 fn は導体表面に沿う成分のみからなるベクトルである．この関数 fn

は，２つの隣接する三角形領域 T (+)
n ，T (−)

n （長さ ln の一辺を共有する）において次のよう
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に定義され，Rao-Wilton-Glisson (RWG) 基底関数という*4．

fn(r) =



ln

2A(+)
n

ρ(+)
n (r in T (+)

n )

ln

2A(−)
n

ρ(−)
n (r in T (−)

n )

0 (otherwise)

(5.165)

ただし，A(±)
n は三角形領域 T (±)

n の面積を示す．また，ρ(+)
n は三角形領域 T (+)

n の共有しな
い頂点（位置ベクトル v(+)

n ）からその領域内の点（位置ベクトル r）に向うベクトル，ρ(−)
n

は領域 T (−)
n の点（位置ベクトル r）から共有しない頂点（位置ベクトル v(−)

n ）に向うベク
トルを示し，次のようになる．

ρ(±)
n = ±

(
r − v(±)

n

)
(r in T (±)

n ) (5.166)

図 5.1. RWG 基底関数に関わる変数の定義

*4 S.M.Rao, D.R.Wilton and A.W.Glisson, ”Electromagnetic scattering by surfaces of arbitrary shape,”
IEEE Trans. Antennas Propagat., vol.30, no.3, pp.409-418 (1982), doi: 10.1109/TAP.1982.1142818.
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5.7.2 ガラーキン法

これを境界条件の式に代入し，その両辺に fm を試行関数としてスカラ積をとって積分す
ると，積分範囲は 3角形領域 T (+)

m および T (−)
m であり，これを Sm とすると，

¨
Sm

Ei · fmdS =
¨
Sm

(
jωA + ∇Φ

)
· fmdS

= jω

¨
Sm

A · fmdS +
¨
Sm

(∇Φ) · fmdS (5.167)

上式の第 2項は，ベクトル公式より，
¨
Sm

(
∇Φ

)
· fmdS =

¨
Sm

∇ ·
(
Φfm

)
dS −

¨
Sm

Φ
(
∇ · fm

)
dS (5.168)

いま，3角形領域の面上の成分より 2次元微分演算子 ∇s を定義すると，発散定理は次のよ
うになる．

¨
S

∇s · a dS =
˛
C

a · u dl (5.169)

ただし，uは面 S の法線方向 nおよび周回積分路 C に沿う方向 lに直交する単位ベクトル
u = l × nを示す．これより，

¨
Sm

(
∇Φ

)
· fmdS =

˛
Cm

(
Φfm

)
· u dl −

¨
Sm

Φ
(
∇ · fm

)
dS (5.170)

ここで，周回積分路は領域 T (+)
m および T (−)

m の周辺であり，fm の外向き成分はゼロゆえ，
上式の第 1項はゼロである．したがって，

¨
Sm

(
∇Φ

)
· fmdS = −

¨
Sm

Φ
(
∇s · fm

)
dS (5.171)

上式右辺の∇s · fm は，r が T (±)
m 内にあるとき，

∇s · fm = ∇s ·
(

± lm

2A(±)
m

(
r − v(±)

m

))
= ± lm

2A(±)
m

∇s · r (5.172)

いま，面 S の法線ベクトル n と面 S に沿う直交する２つの単位ベクトル u1，u2 を考え，
位置ベクトル r を

r = t1u1 + t2u2 + nn (5.173)

で表すと，

∇s · r =
(

u1
∂

∂t1
+ u2

∂

∂t2

)
·
(
t1u1 + t2u2 + nn

)
= 2 (5.174)
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よって，

∇s · fm =


± lm

A
(±)
m

(r in T (±)
m )

0 (otherwise)
(5.175)

したがって，
¨
Sm

(
∇Φ

)
· fmdS = −

¨
Sm

Φ
(
∇s · fm

)
dS

= −
¨
T

(+)
m

Φ lm

A
(+)
m

dS −
¨
T

(−)
m

Φ
(

− lm

A
(−)
m

)
dS

= −lm
(

1
A

(+)
m

¨
T

(+)
m

Φ(r) dS − 1
A

(−)
m

¨
T

(−)
m

Φ(r) dS
)

(5.176)

上式の ( )内の項は，各々の領域における Φの平均値 Φ(±)
m であり，三角形が十分小さい場

合，三角形領域の中心 r(c+)
m ，r(c−)

m における値で次のように近似できる．

1
A

(±)
m

¨
T

(±)
m

Φ(r) dS = Φ(±)
m ' Φ(r(c±)

m ) (5.177)

これより，
¨
Sm

(
∇Φ

)
· fmdS = −lm

(
Φ(+)
m − Φ(−)

m

)
' −lm

(
Φ(r(c+)

m ) − Φ(r(c−)
m )

)
(5.178)

一方，
¨
Sm

(
Ei

A

)
· fmdS =

¨
T

(+)
m

(
Ei

A

)
· lm

2A(+)
m

ρ(+)
m dS +

¨
T

(−)
m

(
Ei

A

)
· lm

2A(−)
m

ρ(−)
m dS

(5.179)

についても，積分の近似は，三角形領域中心における値である．

1
A

(±)
m

¨
T

(±)
m

(
Ei(r)
A(r)

)
· ρ(±)

m dS '
(

Ei(r(c±)
m )

A(r(c±)
m )

)
· ρ(c±)

m (5.180)

ただし，

ρ(c±)
m = ±

(
r(c±)
m − v(±)

m

)
(5.181)

これより，
¨
Sm

(
Ei

A

)
· fmdS ' lm

2

(Ei(r(c+)
m )

A(r(c+)
m )

)
· ρ(c+)

m +
(

Ei(r(c−)
m )

A(r(c−)
m )

)
· ρ(c−)

m

 (5.182)
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式 (5.167)は，

lm
2

(
1

A
(+)
m

¨
T

(+)
m

Ei · ρ(+)
m dS + 1

A
(−)
m

¨
T

(−)
m

Ei · ρ(−)
m dS

)

= jω
lm
2

(
1

A
(+)
m

¨
T

(+)
m

A · ρ(+)
m dS + 1

A
(−)
m

¨
T

(−)
m

A · ρ(−)
m dS

)

− lm

(
1

A
(+)
m

¨
T

(+)
m

Φ(r) dS − 1
A

(−)
m

¨
T

(−)
m

Φ(r) dS
)

(m = 1, 2, 3, · · · , N) (5.183)

積分を３角形領域の中心の値で近似すると次のようになる．

lm
2

(
Ei(r(c+)

m ) · ρ(c+)
m + Ei(r(c−)

m ) · ρ(c−)
m

)
= lm

2 jω
(

A(r(c+)
m ) · ρ(c+)

m + A(r(c−)
m ) · ρ(c−)

m

)
− lm

(
Φ(r(c+)

m ) − Φ(r(c−)
m )

)
(m = 1, 2, 3, · · · , N) (5.184)

5.7.3 ポテンシャル積分

観測点を 3角形領域 T (±)
m においた位置ベクトル r でのベクトルポテンシャル Aは，展

開した電流分布の式 (5.164)より，

A(r) = µ

4π

¨
S

J(r′)e
−jkR

R
dS′ = µ

4π

¨
S

(∑
n

Infn(r′)
)
e−jkR

R
dS′

=
∑
n

In

(
µ

4π

¨
Sn

fn(r′)e
−jkR

R
dS′

)
=
∑
n

InAmn(r) (5.185)

ここで，

Amn ≡ µ

4π

¨
Sn

fn(r′)e
−jkR

R
dS′ (5.186)

ただし，

R =
∣∣∣r − r′

∣∣∣ (5.187)

また，スカラポテンシャル Φは，

Φ(r) = 1
4πε

¨
S

σ(r′)e
−jkR

R
dS′ (5.188)

連続の式 ∇s · J = −jωσ より，

σ = −∇s · J

jω
= − 1

jω
∇s ·

(∑
n

Infn

)
= − 1

jω

∑
n

In
(
∇s · fn

)
(5.189)
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これより，Φは，

Φ(r) = 1
4πε

¨
S

{
− 1
jω

∑
n

In
(
∇′
s · fn(r′)

)} e−jkR

R
dS′

=
∑
n

In

{
− 1

4πjωε

¨
Sn

(
∇′
s · fn(r′)

)e−jkR

R
dS′

}
=
∑

InΦmn(r) (5.190)

ここで，

Φmn ≡ − 1
4πjωε

¨
Sn

(
∇′
s · fn(r′)

)e−jkR

R
dS′ (5.191)

三角形領域の中心 r(c±)
m におけるA，Φは，

A(r(c±)
m ) =

∑
InAmn(r(c±)

m ) (5.192)
Φ(r(c±)

m ) =
∑

InΦmn(r(c±)
m ) (5.193)

ここで，

Amn(r(c±)
m ) = µ

4π

¨
Sn

fn(r′)e
−jkR(±)

m

R
(±)
m

dS′ (5.194)

Φmn(r(c±)
m ) = − 1

4πjωε

¨
Sn

(
∇′
S · fn(r′)

)e−jkR(±)
m

R
(±)
m

dS′ (5.195)

ただし，

R(±)
m =

∣∣∣r(c±)
m − r′

∣∣∣ (5.196)

5.7.4 マトリクス方程式

これより，式 (5.183)は，

lm
2

(
1

A
(+)
m

¨
T

(+)
m

Ei · ρ(+)
m dS + 1

A
(−)
m

¨
T

(−)
m

Ei · ρ(−)
m dS

)

= jω
lm
2

{
1

A
(+)
m

¨
T

(+)
m

(∑
n

InAmn(r)
)

· ρ(+)
m dS + 1

A
(−)
m

¨
T

(−)
m

(∑
n

InAmn(r)
)

· ρ(−)
m dS

}

− lm

(
1

A
(+)
m

¨
T

(+)
m

{∑
InΦmn(r)

)
dS − 1

A
(−)
m

¨
T

(−)
m

(∑
InΦmn(r)

)
dS

}
(m = 1, 2, 3, · · · , N) (5.197)
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整理して，

lm

(
1

2A(+)
m

¨
T

(+)
m

Ei · ρ(+)
m dS + 1

2A(−)
m

¨
T

(−)
m

Ei · ρ(−)
m dS

)

= lm

{
jω

(∑
n

In
1

2A(+)
m

¨
T

(+)
m

Amn(r) · ρ(+)
m dS

+
∑
n

In
1

2A(−)
m

¨
T

(−)
m

Amn(r) · ρ(−)
m dS

)

−
(∑

In
1

A
(+)
m

¨
T

(+)
m

Φmn(r) dS −
∑

In
1

A
(−)
m

¨
T

(−)
m

Φmn(r) dS
)}

(m = 1, 2, 3, · · · , N) (5.198)

近似式では，式 (5.184)は，

lm

(
Ei(r(c+)

m ) · ρ(c+)
m

2 + Ei(r(c−)
m ) · ρ(c−)

m

2

)

= lm

[
jω

{(∑
InA(+)

mn

)
· ρ(c+)

m

2 +
(∑

InA(−)
mn

)
· ρ(c−)

m

2

}

−
{(∑

n

InΦ(+)
mn

)
−
(∑

n

InΦ(−)
mn

)}]
(5.199)

よって，

Vm ≡ lm

(
1

2A(+)
m

¨
T

(+)
m

Ei · ρ(+)
m dS + 1

2A(−)
m

¨
T

(−)
m

Ei · ρ(−)
m dS

)

' lm

(
Ei(r(c+)

m ) · ρ(c+)
m

2 + Ei(r(c−)
m ) · ρ(c−)

m

2

)
(5.200)

zmn ≡ lm

{
jω

(
1

2A(+)
m

¨
T

(+)
m

Amn(r) · ρ(+)
m dS + 1

2A(−)
m

¨
T

(−)
m

Amn(r) · ρ(−)
m dS

)

−
(

1
A

(+)
m

¨
T

(+)
m

Φmn(r) dS − 1
A

(−)
m

¨
T

(−)
m

Φmn(r) dS
)}

' lm

{
jω

(
A(+)
mn · ρ(c+)

m

2 + A(−)
mn · ρ(c−)

m

2

)
− Φ(+)

mn + Φ(−)
mn

}
(5.201)

とおくと，

Vm =
N∑
n=1

zmnIn (m = 1, 2, 3, · · · , N) (5.202)

行列表示すると，

V = [Z]I (5.203)
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よって，

I = [Z]−1V = [Y ]V (5.204)

ただし

[Y ] = [Z]−1 (5.205)

5.8 RWG基底関数を用いたポテンシャル積分について

RWG基底関数を用いたベクトルポテンシャルおよびスカラポテンシャルにおいて，観測
点と波源が一致する特異点を含めた積分について説明する*5．　三角形領域 Tq おける電流
3 成分 (i = 1, 2, 3) から領域 Tp の中心点（位置ベクトル r(c)

p ）への寄与をまとめて考える
と，これらの積分は次のようになる．

Apq,i = µ

4π

¨
Tq

(
lq,i
2Aq

ρq,i

)
e−jkRp

Rp
dS′ (i = 1, 2, 3) (5.206)

Φpq,i = ∓ 1
4πjωε

¨
Tq

(
lq,i
Aq

)
e−jkRp

Rp
dS′ (i = 1, 2, 3) (5.207)

ここで，

Rp =
∣∣∣r(c)
p − r′

∣∣∣ (5.208)
ρq,i = ±(r′ − vq,i) (i = 1, 2, 3) (5.209)

ただし，vq,i および lq,i (i = 1, 2, 3)は，三角形領域 Tq の頂点の位置ベクトルおよびその対
辺の長さ，Aq はその面積を示す．また，上式の ±の符号は，領域 Tq が T (±) のどちらかで
対応して決まる．

*5 D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler,
“Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,”
IEEE Trans. Antennas Propagat., vol.32, no.3, pp.276-281 (1984), doi: 10.1109/TAP.1984.1143304.

169



図 5.2. 各辺 i（i = 1, 2, 3）に関する計算に用いる変数の定義

簡単のため，i = 1を考え，観測点を一般化して rとおく．また，Tq の符号は (+)につい
て考え，各変数の添字を略すとベクトルポテンシャルAは，

A = µ

4π
l

2A

¨
T

ρ(+)
m

e−jkR

R
dS′ (5.210)

上式の積分項 I を，次のような項に分けて計算していく．

I =
¨
T

ρ(+)
m

e−jkR

R
dS′ =

¨
T

(ρ′ − ρv)
e−jkR

R
dS′

=
¨
T

(ρ′ − ρ)e
−jkR

R
dS′ + (ρ − ρv)

¨
T

e−jkR

R
dS′ (5.211)

ただし，ρ，ρ′，ρv は，観測点の位置ベクトル r，電流源の位置ベクトル r′，共有する辺に
対向する三角形の頂点 v(+)

m を各々面 S に投影したベクトルを示す．
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図 5.3. RWG 基底関数に関わる変数の定義

さらに，

e−jkR

R
=
(
e−jkR

R
− 1
R

)
+ 1
R

(5.212)

lim
R→0

(
e−jkR

R
− 1
R

)
= −jk (5.213)

を考慮して，

I =
¨
T

(ρ′ − ρ)e
−jkR − 1
R

dS′ +
¨
T

ρ′ − ρ

R
dS′

+ (ρ − ρv)
¨
T

e−jkR − 1
R

dS′ + (ρ − ρv)
¨
T

dS′

R
(5.214)

上式の第 1項および第 3項は特異点を持たないため，容易に数値積分できる．

5.8.1 3角形領域の積分について

まず，三角形領域 Tq における波源の位置ベクトル r′ は，

r′ = vq,1 + ξq(vq,2 − vq,1) + ηq(vq,3 − vq,1) (0 ≤ ξq, ηq ≤ 1) (5.215)

簡単のため，添字 q は省略して，

r′ = v1 + ξ(v2 − v1) + η(v3 − v1) (0 ≤ ξ, η ≤ 1)
= (1 − ξ − η)v1 + ξv2 + ηv3 (5.216)
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これより，面積要素 dS′ は，

dS′ =
∣∣∣∣∣∂r′

∂ξ
× ∂r′

∂η

∣∣∣∣∣ dξdη =
∣∣∣(v2 − v1) × (v3 − v1)

∣∣∣dξdη = 2Aqdξdη (5.217)

よって，三角形領域 Tq の積分は，次のような 2重積分の形で表される．
¨
Tq

g(r′)dS′ = 2Aq
ˆ 1

ξ=0

ˆ 1−ξ

η=0
g
(

(1 − ξ − η)v1 + ξv2 + ηv3

)
dηdξ (5.218)

図 5.4. 3 角形領域の面積分に関わる変数の定義

5.8.2 特異点を含む積分について

式 (5.214)の第 2項および第 4項の積分 I2，I4

I2 =
¨
T

ρ′ − ρ

R
dS′ (5.219)

I4 =
¨
T

dS′

R
(5.220)
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については，周回積分への変換と特異点のふるまいを考慮した積分を行う．まず，準備とし
て，導体面に沿う 2次元演算子∇s を作用させたときの計算を行う．

P = Pup ≡ ρ′ − ρ (5.221)
P = |ρ′ − ρ| (5.222)

R = |r − r′| = |dn + ρ − ρ′| = |dn − Pup| =
√
d2 + P 2 (5.223)

∇′
sR = ∂R

∂P
up = P

R
up = P

R
= ρ′ − ρ

R
(5.224)

これより，積分 I2 に対して，特異点 P = 0の点を含む微小領域を sε として，次のように領
域 sε とそれ以外に分けて積分し，それから極限を求める．

I2 =
¨
S

ρ′ − ρ

R
dS′ = lim

sε→0

¨
S−sε

∇′
sRdS

′ + lim
sε→0

¨
sε

ρ′ − ρ

R
dS′ (5.225)

ここで，

R

P
=

√
d2 + P 2

P
=
√
d2

P 2 + 1 (5.226)

∂

∂P

(
R

P

)
= ∂

∂P

√ d2

P 2 + 1
 = − d2

P 3
P√

d2 + P 2
= − d2

P 2
1
R

(5.227)

また，

∇′
s ·
(
R

P
uρ

)
= ∇′

s

R

P
· uρ + R

P
∇′
s · uρ = ∂

∂P

(
R

P

)
+ R

P

1
P

= − d2

P 2
1
R

+ R

P 2

= −d2 +R2

P 2R
= P 2

P 2R
= 1
R

(5.228)

同様にして，積分 I4 も特異点 P = 0の点を含む微小領域を sε として，

I4 =
¨
T

dS′

R
= lim

sε→0

¨
S−sε

∇′
s ·
(
RP

P 2

)
dS′ + lim

sε→0

¨
sε

dS′

R
(5.229)

と分けて考えることにする．

5.8.3 周回積分への変換

式 (5.229)の第 1項は P = 0の点を除いた積分であり，次のようにガウスの 2次元発散
定理により周回積分に変換できる．

lim
ε→0

¨
S−sε

∇′
s ·
(
RP

P 2

)
dS′ = lim

ε→0

˛
C−cε

RP

P 2 · du′

=
˛
C

R

P 2

(
P · u′

)
dl′ + lim

ε→0

˛
−cε

R

P

(
up · u′

)
dl′ (5.230)
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ただし，周回積分路 C は面 S の周辺，cε は面 sε の周辺の各々閉じた経路を示す．また，ベ
クトル線積分要素 du′(= u′dl′) の方向は，面 S，sε 上で積分路 C，cε の法線方向にとる．
上式の第 1項は，積分路 C が 3角形領域の辺 iに沿う直線の積分路 Li となるので，˛

C

R

P 2

(
P · u′

)
dl′ =

∑
i

(
P (0) · u′

i

)ˆ
Li

R

P 2dl
′ (5.231)

ここで，

P 2 = (P (0))2 + l′2 (5.232)
R2 = d2 + (P (0))2 + l′2 = d2 + P 2 (5.233)

より，

R

P 2 = R

P 2
R

R
= P 2 + d2

P 2R
= 1
R

+ d2

P 2R

= 1√
d2 + (P (0))2 + l′2

+ d2{
(P (0))2 + l′2

}2√
d2 + (P (0))2 + l′2

(5.234)

辺 i（積分路 Li）の両端の座標成分を l = l
(−)
i , l

(+)
i とすると，

ˆ
Li

R

P 2dl
′ =
ˆ
Li

(
1
R

+ d2

P 2R

)
dl′

=
ˆ l

(+)
i

l
(−)
i

dl′√
d2 +

(
P

(0)
i

)2
+ l′2

+ d2
ˆ l

(+)
i

l
(−)
i

dl′{(
P

(0)
i

)2
+ l′2

}√
d2 +

(
P

(0)
i

)2
+ l′2

(5.235)

図 5.5. 辺 i に沿う線積分に関わる変数の定義（i = 1 のとき）
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上式は，置換積分（t ≡ x+
√
x2 + a2）より得られる不定積分公式（積分定数 C は省略）ˆ

dx√
x2 + a2

= ln
∣∣∣x+

√
x2 + a2

∣∣∣ (5.236)

を用い，

R
(±)
i =

√
d2 +

(
P

(0)
i

)2
+
(
l
(±)
i

)2
(5.237)

とおいて，式 (5.235)の第 1項は，
ˆ l

(+)
i

l
(−)
i

dl′√
d2 +

(
P

(0)
i

)2
+ l′2

=
[
ln
∣∣∣∣∣l′ +

√
d2 +

(
P

(0)
i

)2
+ l′2

∣∣∣∣∣
]l(+)

i

l
(−)
i

= ln
∣∣∣∣∣l(+)
i +

√
d2 +

(
P

(0)
i

)2
+
(
l
(+)
i

)2
∣∣∣∣∣− ln

∣∣∣∣∣l(−)
i +

√
d2 +

(
P

(0)
i

)2
+
(
l
(−)
i

)2
∣∣∣∣∣

= ln
∣∣∣l(+)
i +R

(+)
i

∣∣∣− ln
∣∣∣l(−)
i +R

(−)
i

∣∣∣ = ln

∣∣∣∣∣∣ l
(+)
i +R

(+)
i

l
(−)
i +R

(−)
i

∣∣∣∣∣∣ (5.238)

また，置換積分（|q|x ≡ p
√
x2 + p2 + q2 tan t）より得られる不定積分公式（積分定数 C は

省略）
ˆ

dx(
x2 + p2

)√
x2 + p2 + q2

= 1
|pq|

tan−1

 |q|x
p
√
x2 + p2 + q2

 (5.239)

を用いると，式 (5.235)の第 2項は，

d2
ˆ l

(+)
i

l′=l(−)
i

dl′{(
P

(0)
i

)2
+ l′2

}√
d2 +

(
P

(0)
i

)2
+ l′2

= d2

P
(0)
i |d|

tan−1

 |d| l′

P
(0)
i

√
d2 +

(
P

(0)
i

)2
+ l′2



l
(+)
i

l′=l(−)
i

= |d|
P

(0)
i

tan−1

 |d|l(+)
i

P
(0)
i R

(+)
i

− tan−1

 |d|l(−)
i

P
(0)
i R

(−)
i

 (5.240)

積分路 −cε においては，up · u′ = −1，dl′ = Pdφ，R =
√
d2 + ε2 より，

lim
ε→0

˛
−cε

R

P

(
up · u′

)
dl′ = lim

ε→0

ˆ α

0

R

P
(−1)Pdφ = lim

ε→0
(−R)

ˆ α

0
dφ

= lim
ε→0

−
√
d2 + ε2 · α = −α|d| (5.241)
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一方，式 (5.229)の I4 の第 2項は，P = 0の点を座標原点にしたローカルな極座標系を
考え，積分範囲 sε を半径 ε，平面角 α [rad]の円形領域にとり，t ≡ d2 + P 2 の置換積分を
実行すると，次のようになる．

lim
ε→0

¨
sε

dS′

R
= lim

ε→0

ˆ α

φ=0

ˆ ε

P=0

PdPdφ√
d2 + P 2

= lim
ε→0

[
φ
]α

0

ˆ 1√
t

dt

2 = lim
ε→0

α
[√

t
]

= lim
ε→0

α
[√
d2 + P 2

]ε
0

= lim
ε→0

α
(√

d2 + ε2 − |d|
)

= 0 (5.242)

よって，

I4 =
¨
T

dS′

R

= −α|d| +
∑
i

(
uP0,i · u′

i

)

·

P (0)
i ln

∣∣∣∣∣∣ l
(+)
i +R

(+)
i

l
(−)
i +R

(−)
i

∣∣∣∣∣∣ +|d|

tan−1

 |d|l(+)
i

P
(0)
i R

(+)
i

− tan−1

 |d|l(−)
i

P
(0)
i R

(−)
i




(5.243)

ただし，

α =
∑
i

(
uP0,i · u′

i

)tan−1

 l(+)
i

P
(0)
i

− tan−1

 l(−)
i

P
(0)
i

 (5.244)

また，

β ≡ tan−1 l
(±)
i

P
(0)
i

(5.245)

γ ≡ tan−1 |d|l(±)
i

P
(0)
i R

(±)
i

(5.246)

とおき，正接の加法定理

tan(β − γ) = tan β − tan γ
1 + tan β tan γ (5.247)

を用いると，(
l
(±)
i

)2
=
(
P

(±)
i

)2
−
(
P

(0)
i

)2
(5.248)(

P
(±)
i

)2
=
(
R

(±)
i

)2
−
∣∣∣d∣∣∣2 (5.249)(

P
(0)
i

)2
=
(
R

(0)
i

)2
−
∣∣∣d∣∣∣2 (5.250)

より，次の関係が得られる（導出省略）．

tan−1

 l(±)
i

P
(0)
i

− tan−1

 |d|l(±)
i

P
(0)
i R

(±)
i

 = tan−1

 P
(0)
i l

(±)
i(

R
(0)
i

)2
+ |d|R(±)

i

 (5.251)

176



これより，

I4 =
¨
T

dS′

R

=
∑
i

(
uP0,i · u′

i

) P (0)
i ln

∣∣∣∣∣∣ l
(+)
i +R

(+)
i

l
(−)
i +R

(−)
i

∣∣∣∣∣∣
− |d|

tan−1

 P
(0)
i l

(+)
i(

R
(0)
i

)2
+ |d|R(+)

i

 − tan−1

 P
(0)
i l

(−)
i(

R
(0)
i

)2
+ |d|R(−)

i



 (5.252)

積分 I2 についても，式 (5.225)の第 1項は 2次元勾配定理より，周回積分（積分路 C お
よび cε）に変換でき，第 2項は I4 の計算と同様にしてゼロになる（導出省略）．よって，

I2 = lim
sε→0

¨
S−sε

∇′
sRdS

′ = lim
ε→0

˛
C−cε

Ru′dl′

=
∑
i

u′
i

ˆ
Li

Rdl′ + lim
ε→0

ˆ
−cε

Ru′dl′

=
∑
i

u′
i

ˆ l
(+)
i

l
(−)
i

√
d2 +

(
P

(0)
i

)2
+ l′2 dl′ + lim

ε→0
R

ˆ α

0
u′εdφ (5.253)

上式の第 2項はゼロ，第 1項は置換積分（t ≡ x +
√
x2 + a2）より得られる不定積分公式

（積分定数 C は省略）
ˆ √

x2 + a2 dx = 1
2
(
x
√
x2 + a2 + a2 ln

∣∣∣x+
√
x2 + a2

∣∣∣) (5.254)

より，

I2 =
∑
i

u′
i

1
2

[
l′
√
d2 +

(
P

(0)
i

)2
+ l′2

+
{
d2 +

(
P

(0)
i

)2
}

ln
∣∣∣∣∣l′ +

√
d2 +

(
P

(0)
i

)2
+ l′2

∣∣∣∣∣
]l(+)

i

l
(−)
i

= 1
2
∑
i

u′
i

[ {
l(+)R

(+)
i +

(
R

(0)
i

)2
ln
∣∣∣l(+)
i +R

(+)
i

∣∣∣}

−
{
l(−)R

(−)
i +

(
R

(0)
i

)2
ln
∣∣∣l(−)
i +R

(−)
i

∣∣∣} ]

= 1
2
∑
i

u′
i

(R(0)
i

)2
ln

∣∣∣∣∣∣ l
(+)
i +R

(+)
i

l
(−)
i +R

(−)
i

∣∣∣∣∣∣+ l
(+)
i R

(+)
i − l

(−)
i R

(−)
i

 (5.255)

5.9 3角形領域の別の積分について
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5.9.1 3角形頂点が特異点となる場合

観測点 P が 3角形の頂点の一つである v2 のとき，ポテンシャル積分において，r = v2

が r′ と一致すると被積分関数は特異点になる．これに対して，Duffy Transform*6より，変
数変換として，η ≡ γ(1 − ξ)とおく方法がある．これより，位置ベクトル r′ は次のように
なる．

r′ = v1 + ξ(v2 − v1) + γ(1 − ξ)(v3 − v1) (0 ≤ ξ, η ≤ 1)
= {1 − ξ − γ(1 − ξ)}v1 + ξv2 + γ(1 − ξ)v3

= (1 − ξ)(1 − γ)v1 + ξv2 + γ(1 − ξ)v3 (5.256)

微分して，

∂r′

∂ξ
= (v2 − v1) − γ(v3 − v1) (5.257)

∂r′

∂γ
= (1 − ξ)(v3 − v1) (5.258)

ベクトル積は，

∂r′

∂ξ
× ∂r′

∂γ
=
{
(v2 − v1) − γ(v3 − v1)

}
× (1 − ξ)(v3 − v1)

= (1 − ξ)(v2 − v1) × (v3 − v1) (5.259)

これより，面積要素 dS′ は，

dS′ =
∣∣∣∣∣∂r′

∂ξ
× ∂r′

∂γ

∣∣∣∣∣ dξdγ = (1 − ξ)
∣∣∣∣(v2 − v1) × (v3 − v1)

∣∣∣∣dξdγ
= (1 − ξ)2Aqdξdγ (5.260)

ただし，Aq は 3角形領域の面積を示し，

Aq = 1
2

∣∣∣∣(v2 − v1) × (v3 − v1)
∣∣∣∣ (5.261)

r = v2 のとき，　観測点 P と波源との距離 Rは，

R = |r − r′| = |v2 − r′|

=
∣∣∣v2 −

{
(1 − ξ)(1 − γ)v1 + ξv2 + γ(1 − ξ)v3

}∣∣∣
= |−(1 − ξ)(1 − γ)v1 + (1 − ξ)v2 − γ(1 − ξ)v3|

=
∣∣∣(1 − ξ)

{
− (1 − γ)v1 + v2 − γv3

}∣∣∣ (5.262)

*6 Walton C. Gibson, “The Method of Moments in Electromagnetics,” 2nd Ed., p.267, CRC Press (2015),
ISBN-13: 978-0367365066.
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ここで，0 ≤ ξ ≤ 1ゆえ，

R = (1 − ξ) |(v2 − v1) − γ(v3 − v1)| (5.263)

これより，

dS′

R
=

(1 − ξ)
∣∣∣∣(v2 − v1) × (v3 − v1)

∣∣∣∣dξdγ
(1 − ξ) |(v2 − v1) − γ(v3 − v1)|

= 2Aqdξdγ
|(v2 − v1) − γ(v3 − v1)| (5.264)

　三角形領域 T (+)
q の頂点 v2 に観測点がある場合，ポテンシャル積分は，

Aqq,1 = µ

4π
lq,1
2Aq

¨
T

(+)
q

(r′ − vq,1)e−jkRdS
′

R

= µ

4π lq,1
ˆ 1

ξ=0

ˆ 1

γ=0
(r′ − vq,1) e−jkRdξdγ

|(v2 − v1) − γ(v3 − v1)| (5.265)

Φqq,1 = lq,1
2πjωε

¨
T

(+)
q

e−jkRdS
′

R

= lq,1
πjωε

Aq

ˆ 1

ξ=0

ˆ 1

γ=0

e−jkRdξdγ

|(v2 − v1) − γ(v3 − v1)| (5.266)

5.9.2 3角形領域内部に特異点がある場合の積分

三角形領域 T (+)
q 内部の面上に観測点がある場合，その点を新たな頂点として 3つの 3角

形に分割し，特異点が新たな 3角形の v2 となるように積分すると，

Aqq,1 = µ

4π
lq,1
2Aq

¨
T

(+)
q

(r′ − vq,1)e−jkRdS
′

R

= µ

4π
lq,1
Aq

(
Aq,1

ˆ 1

ξ=0

ˆ 1

γ=0
(r′ − vq,1) e−jkRdξdγ

|(vq,1 − v1) − γ(v3 − v1)|

+ Aq,2

ˆ 1

ξ=0

ˆ 1

γ=0
(r′ − vq,1) e−jkRdξdγ

|(vq,1 − v2) − γ(v1 − v2)|

+Aq,3
ˆ 1

ξ=0

ˆ 1

γ=0
(r′ − vq,1) e−jkRdξdγ

|(vq,1 − v3) − γ(v2 − v3)|

)
(5.267)
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Φqq,1 = lq,1
2πjωε

¨
T

(+)
q

e−jkRdS
′

R

= lq,1
πjωε

(
Aq,1

ˆ 1

ξ=0

ˆ 1

γ=0

e−jkRdξdγ

|(vq,1 − v1) − γ(v3 − v1)|

+ Aq,2

ˆ 1

ξ=0

ˆ 1

γ=0

e−jkRdξdγ

|(vq,1 − v2) − γ(v1 − v2)|

+Aq,3
ˆ 1

ξ=0

ˆ 1

γ=0

e−jkRdξdγ

|(vq,1 − v3) − γ(v2 − v3)|

)
(5.268)

ここで，

Aq =
3∑
i=1

Aq,i (5.269)

5.9.3 3角形領域の辺上に特異点がある場合の積分

三角形領域 T (+)
q の辺上に観測点がある場合，その点を新たな頂点として 2つの 3角形に

分割し，特異点が新たな 3角形の v2 となるように積分すると，

Aqq,1 = µ

4π
lq,1
2Aq

¨
T

(+)
q

(r′ − vq,1)e−jkRdS
′

R

= µ

4π
lq,1
Aq

(
Aq,1

ˆ 1

ξ=0

ˆ 1

γ=0
(r′ − vq,1) e−jkRdξdγ

|(vq,1 − v1) − γ(v3 − v1)|

+Aq,2
ˆ 1

ξ=0

ˆ 1

γ=0
(r′ − vq,1) e−jkRdξdγ

|(vq,1 − v3) − γ(v2 − v3)|

)
(5.270)

Φqq,1 = lq,1
2πjωε

¨
T

(+)
q

e−jkRdS
′

R

= lq,1
πjωε

(
Aq,1

ˆ 1

ξ=0

ˆ 1

γ=0

e−jkRdξdγ

|(vq,1 − v1) − γ(v3 − v1)|

+Aq,2
ˆ 1

ξ=0

ˆ 1

γ=0

e−jkRdξdγ

|(vq,1 − v3) − γ(v2 − v3)|

)
(5.271)

ここで，

Aq =
2∑
i=1

Aq,i (5.272)

5.10 Poggio-Miller-Chang-Harrington-Wu-Tsai (PM-
CHWT) 積分方程式
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5.10.1 観測点が境界面にない場合

有限空間（領域 V）に電磁流源があり，その有限空間の境界（面 S1, · · ·）以外の観測点
P での電界 Ep および磁界Hp は*7，

Ep = − 1
4π

˚
V

(
jωµψJ + Jm × ∇′ψ − ρ

ε
∇′ψ

)
dV ′

− 1
4π

¨
S1+ ···

{
jωµψ(n × H) − (n × E) × ∇′ψ − (n · E)∇′ψ

}
dS′ (5.273)

Hp = 1
4π

˚
V

(
−jωµψJm + J × ∇′ψ + ρm

µ
∇′ψ

)
dV ′

+ 1
4π

¨
S1+ ···

{
jωεψ(n × E) + (n × H) × ∇′ψ + (n · H)∇′ψ

}
dS′ (5.274)

領域 V に電磁流源がない場合は，上式は第 2項の面積分のみである．逆に，境界面のない
無限空間，あるいは境界面の電磁界や等価波源（equivalent sources）がゼロの場合は，上
式は第 1項の体積積分のみである．

5.10.2 観測点が境界面にある場合

ストラットンの定理より，面 S1 + · · · + Σに囲まれた領域 V において，波源の微分演
算子を ∇ → ∇′，領域 V ′ の外向き法線ベクトルを n′

o（ = −n)，積分要素も dV → dV ′，
dS → dS′ として，次式が成り立つ †．˚

V

(
jωµψJ + Jm × ∇′ψ − ρ

ε
∇′ψ

)
dV ′

=
‹
S1+ ··· +Σ

{
jωµψ(n′

o × H) − (n′
o × E) × ∇′ψ − (n′

o · E)∇′ψ
}
dS′ (5.275)

面 Si の境界条件より，面積分方程式が得られ，波源を基底関数で展開し，展開係数を数値
的に解くことできる*8．このとき，観測点 rは面 Si にとるため，面積分に特異点が生じる．
観測点 r（微小の球面 Σの内部）と面 Si 上の波源 r′ との距離を r0 として，上式の面積分
のうち，微小の球面 Σおよび観測点が面上に接近している面 SΣ の面積分について r0 → 0

*7 Samuel Silver, “Microwave Antenna Theory and Design,” 3.8. General Solution of the Field Equations
in Terms of the Sources, for a Time-periodic Field, McGraw Hill (1949), IEE, reprint (1984), ISBN-13:
978-0863410178.

*8 A. J. Poggio and E. K. Miller, “Integral equation solutions of three dimensional scattering problems,”
in Computer Techniques for Electromagnetics, Chapter 4, R. Mittra, Ed. Elmsford, NY: Permagon
(1973), ISSN: 0074-803X.

181



の極限を求めると，

lim
r0→0

‹
Σ−SΣ

{ } dS’ = lim
r0→0

(
−e−jkr0

‹
Σ−SΣ

EdΩ
)

= −Ep

(‹
Σ
dΩ −

‹
SΣ

dΩ
)

= −(4π − Ωp)Ep (5.276)

これより，˚
V

(
jωµψJ + Jm × ∇′ψ − ρ

ε
∇′ψ

)
dV ′

= −(4π − Ωp)Ep + −−
ˆ̂
S1+ ···

{
jωµψ(n′

o × H) − (n′
o × E) × ∇′ψ − (n′

o · E)∇′ψ
}
dS′

(5.277)

ただし， −−
ˆ̂
は特異点（singularities）を取り除いたコーシーの主値積分（Cauchy principle

value integral）を示す．よって，Ep は，n′ = −n′
o として，

Ep = − 1
4π
(
1 − Ωp

4π

)˚
V

(
jωµψJ + Jm × ∇′ψ − ρ

ε
∇′ψ

)
dV ′

− 1
4π
(
1 − Ωp

4π

) −−
ˆ̂
S1+ ···

{
jωµψ(n′ × H) − (n′ × E) × ∇′ψ − (n′ · E)∇′ψ

}
dS′

(5.278)

ここで，

T ≡ 1
1 − Ωp

4π
(5.279)

とおくと，

Ep = − T

4π

˚
V

(
jωµψJ + Jm × ∇′ψ − ρ

ε
∇′ψ

)
dV ′

− T

4π −−
ˆ̂
S1+ ···

{
jωµψ(n′ × H) − (n′ × E) × ∇′ψ − (n′ · E)∇′ψ

}
dS′ (5.280)

双対性より，磁界Hp は，

Hp = − T

4π

˚
V

(
jωµψJm − J × ∇′ψ − ρm

µ
∇′ψ

)
dV ′

− T

4π −−
ˆ̂
S1+ ···

{
jωεψ(n′ × (−E)) − (n′ × H) × ∇′ψ − (n′ · H)∇′ψ

}
dS′

(5.281)

次のように変形すれば，文献の (4.8b)と一致する．

Hp = T

4π

˚
V

(
−jωµψJm + J × ∇′ψ + ρm

µ
∇′ψ

)
dV ′

+ T

4π −−
ˆ̂
S1+ ···

{
jωεψ(n′ × E) + (n′ × H) × ∇′ψ + (n′ · H)∇′ψ

}
dS′ (5.282)
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ただし，観測点が境界面 SΣ にあり，その面が滑らかな場合，ΩP = 2π であり，T = 2とな
る．なお，観測点が境界面にない場合，ΩP = 0であり，T = 1となる．

5.10.3 入射波がある場合

面 S1 と面 S で囲まれた領域 V に電磁流源があり，面 S1 を無限遠方まで十分大きする．
このとき，十分遠方の面 S1 上の波源により，観測点 P では平面波が入射しているとみな
す．また，閉曲面 S 内部には何らかの波源があって，面 S 上の電磁界が 2次波源として与
えられているものとする（境界条件）．これより，観測点 P が面 S 上にあるとき，

1
T

Ep = Einc − 1
4π

˚
V

(
jωµψJ + Jm × ∇′ψ − ρ

ε
∇′ψ

)
dV ′

− 1
4π −−
ˆ̂
S1+ ···

{
jωµ(n′ × H)ψ − (n′ × E) × ∇′ψ − (n′ · E)∇′ψ

}
dS′ (5.283)

したがって，電界積分方程式（electric field integral equation: EFIE）は次のようになる．

Ep = TEinc − T

4π

˚
V

(
jωµψJ + Jm × ∇′ψ − ρ

ε
∇′ψ

)
dV ′

− T

4π −−
ˆ̂
S

{
jωµ(n′ × H)ψ − (n′ × E) × ∇′ψ − (n′ · E)∇′ψ

}
dS′ (5.284)

同様にして，磁界積分方程式（magnetic field integral equation: MFIE）は次のようになる．

Hp = TH inc + T

4π

˚
V

(
−jωµψJm + J × ∇′ψ + ρm

µ
∇′ψ

)
dV ′

+ T

4π −−
ˆ̂
S

{
jωε(n′ × E)ψ + (n′ × H) × ∇′ψ + (n′ · H)∇′ψ

}
dS′ (5.285)

ここで，閉曲面 S 上の 2次波源による散乱磁界Hs は，

Hs = T

4π −−
ˆ̂
S

{
jωε(n′ × E)ψ + (n′ × H) × ∇′ψ + (n′ · H)∇′ψ

}
dS′ (5.286)

Maxwellの方程式 ∇′ × H = jωεE より，

Hs = T

4π −−
ˆ̂
S

{
n′ × (∇′ × H)ψ + (n′ × H) × ∇′ψ + (n′ · H)∇′ψ

}
dS′ (5.287)

波源のない領域（source free region）であれば，式 (5.284)，式 (5.285)は次のようになる．

Ep = TEinc

− T

4π −−
ˆ̂
S

{
jωµ(n′ × H)ψ − (n′ × E) × ∇′ψ − (n′ · E)∇′ψ

}
dS′ (5.288)

Hp = TH inc

+ T

4π −−
ˆ̂
S

{
jωε(n′ × E)ψ + (n′ × H) × ∇′ψ + (n′ · H)∇′ψ

}
dS′ (5.289)
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5.10.4 完全導体による散乱問題（面積分方程式）

面 S として完全導体からなる散乱体表面のみを考え，入射波 Einc，H inc がある場合，完
全導体表面の電界E の接線成分はゼロである．閉曲面 S の外向き法線ベクトルを nとする
と，面磁流Km がゼロ，つまり

Km = −(n × E) = 0 (on S) (5.290)

閉曲面 S では磁荷 ηm もゼロゆえ，

ηm = µ(n · H) = 0 (on S) (5.291)

観測点を面 S 上にとると，式 (5.288)の被積分関数において n′ × E = 0となり，

n × E = n ×
(
TEinc − T

4π −−
ˆ̂
S

{jωµ(n′ × H)ψ − (n′ · E)∇′ψ} dS′
)

= 0 (on S) (5.292)

よって，

n × Einc = 1
4πn × −−

ˆ̂
S

{
jωµ(n′ × H)ψ − (n′ · E)∇′ψ

}
dS′ (on S) (5.293)

また，式 (5.289)より，n′ × E = 0，n′ · H = 0ゆえ，

n × H = n ×
(
TH inc + T

4π −−
ˆ̂
S

(n′ × H) × ∇′ψ dS′
)

(on S) (5.294)

面 S が滑らかであれば，T = 2ゆえ，

n × H = 2n × H inc + 1
2πn × −−

ˆ̂
S

(n′ × H) × ∇′ψ dS′ (on S) (5.295)

面 S 上の電磁界の関係について，Maxwellの方程式∇′ × H = jωεE より，面 S 上の 2次
元微分演算子を∇s とすると，

n′ · (∇′ × H) = n′ ·
{(

∇′
s + n′ ∂

∂n′

)
× H)

}
= n′ · (∇′

s × H)

= H · (∇′
s × n′) − ∇s · (n′ × H) (5.296)

ここで，∇′ × (∇′φ) = 0 より，

∇′
s × n = ∇′ × n = ∇′ × ∇′φ

|∇′φ|
= 0 (5.297)

これより，

n′ · (∇′ × H) = −∇′
s · (n′ × H) = n′ · (jωεE) (5.298)
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等価面電流源を Js(r′) ≡ n′ × H として定義すると，

n′ · E = j

ωε
∇′
s · (n′ × H) = j

ωε
∇′
s · Js(r′) (5.299)

同様にして観測点 P においても Js(r) ≡ n × H を定義する．これより，式 (5.293)は，

n × Einc(r) = 1
4πn × −−

ˆ̂
S

{
jωµJsψ − j

ωε
(∇′

s · Js)∇′ψ
}
dS′

= 1
4πjωεn × −−

ˆ̂
S

{
− ω2µεJsψ + (∇′

s · Js)∇′ψ
}
dS′ (on S) (5.300)

また，式 (5.295)は，

Js(r) = 2n × H inc(r) + 1
2πn × −−

ˆ̂
S

Js × ∇′ψ dS′ (on S) (5.301)

5.10.5 誘電体による散乱問題（面積分方程式）

誘電率 ε2 の誘電体（領域 II，閉曲面 S）に入射波 Einc，H inc がある場合の散乱問題を
考える．誘電体の周りの空間（領域 I）の誘電率は ε1 である．面 S 上から領域 I，II 方向
に向く法線ベクトルを ni(i = 1, 2)とする（n2 = −n1）．透磁率は領域 I，II ともに µであ
る．媒質の境界である面 S における境界条件（boundary conditions）は，

• 電界 E1，E2 および磁界H1，H2 の接線成分が連続であること．

n1 × (E1 − E2) = n1 × E1 + n2 × E2 = 0 (on S) (5.302)
n1 × (H1 − H2) = n1 × H1 + n2 × H2 = 0 (on S) (5.303)

これより，

n2 × E2 = −n1 × E1 (on S) (5.304)
n2 × H2 = −n1 × H1 (on S) (5.305)

• 電束密度D1，D2 および磁束密度B1，B2 の法線成分が連続であること．

n1 · (D1 − D2) = n1 · (ε1E1 − ε2E2)
= ε1n1 · E1 + ε2n2 · E2 = 0 (on S) (5.306)

n1 · (B1 − B2) = n1 · (µH1 − µH2)
= µ(n1 · H1 + n2 · H2) = 0 (on S) (5.307)

これより，

n2 · E2 = −ε1
ε2

n1 · E1 (on S) (5.308)

n2 · H2 = −n1 · H1 (on S) (5.309)
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ここで，式 (5.288)，式 (5.289)より，領域 I では，入射波があり，

n1 × E1(r) = Tn1 × Einc(r)

− T

4πn1 × −−
ˆ̂
S

{
jωµ(n′

1 × H1)ψ1 − (n′
1 × E1) × ∇′ψ1 − (n′

1 · E1)∇′ψ1

}
dS′

(5.310)
n1 × H1(r) = Tn1 × H inc(r)

+ T

4πn1 × −−
ˆ̂
S

{
jωε1(n′

1 × E1)ψ1 + (n′
1 × H1) × ∇′ψ1 + (n′

1 · H1)∇′ψ1

}
dS′

(5.311)

また，領域 II では，入射波がなく，

n2 × E2(r) = − T

4πn2 × −−
ˆ̂
S

{
jωµ(n′

2 × H2)ψ2

− (n′
2 × E2) × ∇′ψ2 − (n′

2 · E2)∇′ψ2

}
dS′

= − T

4πn1 × −−
ˆ̂
S

{
jωµ(n′

1 × H1)ψ2

− (n′
1 × E1) × ∇′ψ2 − ε1

ε2
(n′

1 · E1)∇′ψ2

}
dS′ (5.312)

n2 × H2(r) = T

4πn2 × −−
ˆ̂
S

{
jωε2(n′

2 × E2)ψ2

+ (n′
2 × H2) × ∇′ψ2 + (n′

2 · H2)∇′ψ2

}
dS′

= T

4πn1 × −−
ˆ̂
S

{
jωε2(n′

1 × E1)ψ2

+ (n′
1 × H1) × ∇′ψ2 + (n′

1 · H1)∇′ψ2

}
dS′ (5.313)

ここで，

ψi = e−jkiR

R
(i = 1, 2) (5.314)

ki = ω
√
µεi (i = 1, 2) (5.315)

R = |r − r′| (5.316)
n2 = −n1 (5.317)

上式を式 (5.302)に代入して，

Tn1 × Einc(r)

− T

4πn1 × −−
ˆ̂
S

{
jωµ(n′

1 × H1)ψ1 − (n′
1 × E1) × ∇′ψ1 − (n′

1 · E1)∇′ψ1

}
dS′

− T

4πn1 × −−
ˆ̂
S

{
jωµ(n′

1 × H1)ψ2 − (n′
1 × E1) × ∇′ψ2 − ε1

ε2
(n′

1 · E1)∇′ψ2

}
dS′ = 0

(5.318)
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整理して，

n1 × Einc(r)

= 1
4πn1 × −−

ˆ̂
S

{
jωµ(n′

1 × H1)(ψ1 + ψ2)

− (n′
1 × E1) × ∇′(ψ1 + ψ2) − (n′

1 · E1)∇′
(
ψ1 + ε1

ε2
ψ2

)}
dS′ (5.319)

また，式 (5.303)に代入すると，

Tn1 × H inc(r)

+ T

4πn1 × −−
ˆ̂
S

{
jωε1(n′

1 × E1)ψ1 + (n′
1 × H1) × ∇′ψ1 + (n′

1 · H1)∇′ψ1

}
dS′

+ T

4πn1 × −−
ˆ̂
S

{
jωε2(n′

1 × E1)ψ2 + (n′
1 × H1) × ∇′ψ2 + (n′

1 · H1)∇′ψ2

}
dS′ = 0

(5.320)

整理して，

n1 × H inc(r)

= − 1
4πn1 × −−

ˆ̂
S

{
jωε1(n′

1 × E1)
(
ψ1 + ε2

ε1
ψ2

)
+ (n′

1 × H1) × ∇′(ψ1 + ψ2) + (n′
1 · H1)∇′(ψ1 + ψ2)

}
dS′ (5.321)

ここで，面電流源 Js，面磁流源Ks は，

Js(r) = n1 × H1, Js(r′) = n′
1 × H1 (5.322)

Ks(r) = −n1 × E1, Ks(r′) = −n′
1 × E1 (5.323)

式 (5.299)より，

n′
1 · E1 = − 1

jωε1
∇′
s · (n′

1 × H1) = − 1
jωε1

∇′
s · Js (5.324)

同様にして，

n′
1 · H1 = 1

jωµ
∇′
s · (n′

1 × E1) = 1
jωµ

∇′
s · (−Ks) (5.325)
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これより，面電流源 Js，面磁流源Ks を用いて，

n1 × Einc(r)

= 1
4πn1 × −−

ˆ̂
S

{
jωµJs(ψ1 + ψ2)

+ Ks × ∇′(ψ1 + ψ2) + 1
jωε1

(∇′
s · Js)∇′

(
ψ1 + ε1

ε2
ψ2

)}
dS′ (5.326)

n1 × H inc(r)

= 1
4πn1 × −−

ˆ̂
S

{
jωε1Ks

(
ψ1 + ε2

ε1
ψ2

)
− Js × ∇′(ψ1 + ψ2) + 1

jωµ
(∇′

s · Ks)∇′(ψ1 + ψ2)
}
dS′ (5.327)

5.11 2次元問題に対するPMCHWT面積分方程式

閉曲面 S 上の 2次波源による散乱磁界Hs は，

Hs = T

4π −−
ˆ̂
S

{n′ × (∇′ × H)ψ + (n′ × H) × ∇′ψ + (n′ · H)∇′ψ} dS′ (5.328)

5.11.1 2次元問題（TEあるいはTM）

面 S がある方向に一様な場合，面 S の法線方向に対して TE波と TM波は独立である．
したがって，面 S 上では電界が接線成分のみ，あるいは磁界が接線成分のみとして解析す
ればよい．そこで，次の式を考えてみよう*9．

T

4π −−
ˆ̂
S

{(n′ · ∇′)(ψH) + n′ × ∇′ × (ψH) − n′∇′ · (ψH)} dS′ (5.329)

ここで，a ≡ ψH おき，n = n′
xux + n′

yuy + n′
z，axux + ayuy + azuz とすると，上式の被

積分関数は，

(n′ · ∇′)a + n′ × ∇′ × a − n′∇′ · a

=
(
n′
x

∂

∂x
+ n′

y

∂

∂y
+ n′

z

∂

∂z

)(
axux + ayuy + azuz

)
+ (n′

xux + n′
yuy + n′

zuz) ×
{

(∇ × a)xux + (∇ × a)yuy + (∇ × a)zuz

}
− (n′

xux + n′
yuy + n′

zuz)
(
∂ax
∂x

+ ∂ay
∂y

+ ∂ay
∂y

)
(5.330)

*9 A. J. Poggio and E. K. Miller, “Integral equation solutions of three dimensional scattering problems,”
in Computer Techniques for Electromagnetics, Chapter 4, R. Mittra, Ed. Elmsford, NY: Permagon
(1973), ISSN: 0074-803X.
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上式の x成分は，(
n′
x

∂

∂x
+ n′

y

∂

∂y
+ n′

z

∂

∂z

)
ax + n′

y(∇ × a)z − n′
z(∇ × a)y − n′

x

(
∂ax
∂x

+ ∂ay
∂y

+ ∂ay
∂y

)

= n′
x

∂ax
∂x

+ n′
y

∂ax
∂y

+ n′
z

∂ax
∂z

+ n′
y

(
∂ay
∂x

− ∂ax
∂y

)

− n′
z

(
∂ax
∂z

− ∂az
∂x

)
− n′

x

∂ax
∂x

− n′
x

∂ay
∂y

− n′
x

∂az
∂z

= n′
y

∂ay
∂x

+ n′
z

∂az
∂x

− n′
x

∂ay
∂y

− n′
x

∂az
∂z

=
(

−n′
x

∂

∂y
+ n′

y

∂

∂x

)
ay +

(
−n′

x

∂

∂z
+ n′

z

∂

∂x

)
az

= −(n′ × ∇)zay + (n′ × ∇)yaz
=
{
(n′ × ∇) × a

}
x

(5.331)

同様にして，y 成分，z 成分は，{
(n′ × ∇) × a

}
y
,

{
(n′ × ∇) × a

}
z

ゆえ，

(n′ · ∇′)a + n′ × ∇′ × a − n′∇′ · a = (n′ × ∇) × a (5.332)

よって，

(n′ · ∇′)(ψH) + n′ × ∇′ × (ψH) − n′∇′ · (ψH) = (n′ × ∇) × (ψH)
= ψ(n′ × ∇) × H (5.333)

一様な軸方向に沿う単位ベクトルを uz（z 軸とする），法線ベクトル n′ に直交する単位ベ
クトルを uτ ≡ n′ × uz とし，磁界H = Hzuz のとき，

(n′ × ∇) × H =
(

n′ × uτ
∂

∂τ
+ n′ × uz

∂

∂z

)
× H =

(
−uz

∂

∂τ
+ uτ

∂

∂z

)
×Hzuz

= −∂Hz

∂z
n′ (5.334)

z 方向に一様ゆえ，

∂Hz

∂z
= 0 (5.335)

これは TM波の問題であり，このとき式 (5.329)は次のようにゼロになる．

T

4π −−
ˆ̂
S

{(n′ · ∇′)(ψH) + n′ × ∇′ × (ψH) − n′∇′ · (ψH)} dS′

= T

4π −−
ˆ̂
S

ψ(n′ × ∇) × H dS′ = 0 (5.336)
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5.11.2 2次元問題に対する定式化

式 (5.336)を式 (5.328)から引いても散乱磁界Hs は変わらない．まず，その被積分関数
の計算を行うと，{

n′ × (∇′ × H)ψ + (n′ × H) × ∇′ψ + (n′ · H)∇′ψ
}

−
{

(n′ · ∇′)(ψH) + n′ × ∇′ × (ψH) − n′∇′ · (ψH)
}

=
{

n′ × (∇′ × H)ψ − n′ × ∇′ × (ψH)
}

+ (n′ × H) × ∇′ψ − n′∇′ · (ψH) +
[
(n′ · H)∇′ψ − (n′ · ∇′)(ψH)

]
(5.337)

式 (5.337)の第 1項の { }を計算するため，

n′ × ∇′ × (ψH) = n′ × (ψ∇′ × H + ∇′ψ × H)
= n′ × (∇′ × H)ψ + n′ × (∇′ψ × H) (5.338)

これより，{
n′ × (∇′ × H)ψ − n′ × ∇′ × (ψH)

}
= −n′ × (∇′ψ × H)
= n′ × (H × ∇′ψ) (5.339)

ここで，ベクトル公式 a × (b × c) = (a · c)b − (a · b)c より，

n′ × (H × ∇′ψ) = {n′ · (∇′ψ)}H − (n′ · H)(∇′ψ) (5.340)

式 (5.337)の第 2項は，

(n′ × H) × ∇′ψ = (∇′ψ) × (H × n′)
= {(∇′ψ) · n′}H − {(∇′ψ) · H}n′ (5.341)

式 (5.337)の第 3項は，

−n′∇′ · (ψH) = n′ψ(∇′ · H) + n′{(∇′ψ) · H} (5.342)

式 (5.337)に，式 (5.340)，式 (5.341)，式 (5.342)を代入して，

{n′ · (∇′ψ)}H − (n′ · H)(∇′ψ) + {(∇′ψ) · n′}H − {(∇′ψ) · H}n′

+ n′ψ(∇′ · H) + n′{(∇′ψ) · H} +
[
(n′ · H)∇′ψ − (n′ · ∇′)(ψH)

]
= {n′ · (∇′ψ)}H + {(∇′ψ) · n′}H + n′ψ(∇′ · H) − (n′ · ∇′)(ψH)
= {n′ · (∇′ψ)}H + {(∇′ψ) · n′}H + n′ψ(∇′ · H) − {n′ · (∇′ψ)}H − ψ(n′ · ∇′)H
= {(∇′ψ) · n′}H + n′ψ(∇′ · H) − ψ(n′ · ∇′)H

= H
∂ψ

∂n′ − ψ
∂H

∂n′ + n′ψ(∇′ · H) (5.343)
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ここで（導出省略），

(n′ · ∇′)(ψH) = {n′ · (∇′ψ)}H + ψ(n′ · ∇′)H (5.344)

したがって，2次元問題における TM波に対する散乱磁界Hs は次のようになる †．

Hs = T

4π −−
ˆ̂
S

{
H
∂ψ

∂n′ − ψ
∂H

∂n′ + n′ψ(∇′ · H)
}
dS′ (5.345)

同様にして，2次元問題における TE波に対する散乱電界Esは次のようになる（導出省略）．

Es = T

4π −−
ˆ̂
S

{
E
∂ψ

∂n′ − ψ
∂E

∂n′ + n′ψ(∇′ · E)
}
dS′ (5.346)

これより，TE波の入射波 Einc がある場合，

Es = TEinc + T

4π −−
ˆ̂
S

{
E
∂ψ

∂n′ − ψ
∂E

∂n′ + n′ψ(∇′ · E)
}
dS′ (5.347)

また，TM波の入射波H inc がある場合，

Hs = TH inc + T

4π −−
ˆ̂
S

{
H
∂ψ

∂n′ − ψ
∂H

∂n′ + n′ψ(∇′ · H)
}
dS′ (5.348)
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CHAPTER A

付録

A.1 ベクトルの演算

A.1.1 ベクトルの演算公式

|a|2|b|2 = |a · b|2 + |a × b|2 (A.1)
(a × b) · c = (b × c) · a = (c × a) · b (A.2)
a × (b × c) = b(a · c) − c(a · b) (A.3)
(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c) (A.4)
(a × b) × (c × d) = [(a × b) · d]c − [(a × b) · c]d (A.5)

A.1.2 ベクトルの垂直・平行な成分

a = n × (a × n) + n(a · n) = a⊥ + a‖ (A.6)

ここで，

a⊥ = n × (a × n) (A.7)
a‖ = n(a · n) (A.8)

ただし，n は単位ベクトルを示し，a⊥, a‖ は n に垂直（perpendicular），および平行
（parallel）な aの成分を各々示す．



A.1.3 2点間の距離

直角座標系 (x, y, z)において，x，y，z 方向の単位ベクトルを i，j，kとすると，

i · i = j · j = k · k = 1 (A.9)
i · j = j · k = k · i = 0 (A.10)

単位ベクトルを用いて，r = xi + yj + zk，r′ = x′i + y′j + z′k とすると，2点間の距離
Rは，

R = |r − r′|

=
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (A.11)

また，単位ベクトルを ar，a′
r として，r = rar，r′ = r′a′

r とすると，

R = |r − r′|

=
√

(r − r′) · (r − r′)

=
√

r · r − 2(r · r′) + r′ · r′

=
√

|r|2 + |r′|2 − 2(r · r′)

=
√
r2 + r′2 − 2rr′(ar · a′

r) (A.12)

ここで，

r · r′ = (xi + yj + zk) · (x′i + y′j + z′k)
= xx′ + yy′ + zz′ (A.13)

あるいは，

r · r′ = (r · i)(r′ · i) + (r · j)(r′ · j) + (r · k)(r′ · k) (A.14)

A.1.4 点を頂点とする 3角形の面積

　単位ベクトル i，j，kのベクトル積は，

i × j = k, j × k = i, k × i = j (A.15)
j × i = −k, k × j = −i, i × k = −j (A.16)
i × i = j × j = k × k = 0 (A.17)

3角形の頂点を，v1，v2，v3 とすると，この 3角形の面積 Aは，

A = 1
2

∣∣∣∣(v2 − v1) × (v3 − v1)
∣∣∣∣ (A.18)
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ここで，a ≡ v2 − v1 = axi + ayj + azk，b ≡ v3 − v1 = bxi + byj + bzk とおくと，

A = 1
2

∣∣∣∣a × b
∣∣∣∣ (A.19)

ベクトル積は，

a × b = (axi + ayj + azk) × (bxi + byj + bzk)
= axbx(i × i) + axby(i × j) + axbz(i × k)

+aybx(j × i) + ayby(j × j) + aybz(j × k)
+azbx(k × i) + azby(k × j) + azbz(k × k)

= (aybz − azby)i + (azbx − axbz)j + (axby − aybx)k (A.20)

3角形を含む平面上に (x, y)座標を定義して，v1 = x1i+y1j，v2 = x2i+y2j，v3 = x3i+y3j

とすると，3角形の面積 Aは，

A = 1
2

∣∣∣∣(v2 − v1) × (v3 − v1)
∣∣∣∣

= 1
2

∣∣∣∣{(x2 − x1)i + (y2 − y1)j
}

×
{
(x3 − x1)i + (y3 − y1)j

}∣∣∣∣
= 1

2

∣∣∣∣(x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1)
∣∣∣∣ (A.21)

A.1.5 ベクトルの演算例

直角座標系 (x, y, z)において，

a × (b × c) = b(a · c) − c(a · b) (A.22)

の左辺から右辺を導出しよう．ただし，x，y，z 方向の単位ベクトルを i，j，kとする．ま
ず，x成分を計算すると，

{a × (b × c)}x = ay(b × c)z − az(b × c)y
= ay(bxcy − bycx) − az(bzcx − bxcz)
= bx(aycy + azcz) − cx(ayby + azbz)
= bx(axcx + aycy + azcz) − cx(axbx + ayby + azbz)
= bx(a · c) − cx(a · b) (A.23)

ただし，添字 x，y，z はベクトルの x成分，y 成分，z 成分を各々示す．同様にして，y 成
分および z 成分は次のようになる．

{a × (b × c)}y = by(a · c) − cy(a · b) (A.24)
{a × (b × c)}z = bz(a · c) − cz(a · b) (A.25)
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よって，すべての成分を合成すると，次式が得られる．

a × (b × c) = {a × (b × c)}xi + {a × (b × c)}yj + {a × (b × c)}zk
= {bx(a · c) − cx(a · b)}i

+{by(a · c) − cy(a · b)}j + {bz(a · c) − cz(a · b)}k

= b(a · c) − c(a · b) (A.26)

A.2 ベクトルの微分

A.2.1 ベクトルの微分公式

∇(φψ) = φ∇ψ + ψ∇φ (A.27)
∇ · (φa) = a · ∇φ+ φ∇ · a (A.28)
∇ × (φa) = ∇φ× a + φ∇ × a (A.29)
∇(a · b) = (a · ∇)b + (b · ∇)a + a × (∇ × b) + b × (∇ × a) (A.30)
∇ · (a × b) = b · ∇ × a − a · ∇ × b (A.31)
∇ × (a × b) = a(∇ · b) − b(∇ · a) + (b · ∇)a − (a · ∇)b (A.32)
∇ × ∇ × a = ∇∇ · a − ∇2a (A.33)

また，

∇ × (∇φ) = 0 (A.34)
∇ · (∇ × A) = 0 (A.35)

A.2.2 ストークスの定理の応用

式 (A.35)をストークスの定理を用いて証明する．まず，閉じた積分路 C でできる面とし
て，上に膨らんだ面 S1 を考えると，ストークスの定理は，˛

C

A · ds =
ˆ
S1

(∇ × A) · dS (A.36)

この積分路 C の向きを逆にした経路を C(−) とし，この C(−) からなる面として下に膨らん
だ面 S2 を考えると，ストークスの定理は，˛

C(−)
A · ds =

ˆ
S2

(∇ × A) · dS (A.37)

両者を辺々加えると，˛
C

A · ds +
˛
C(−)

A · ds =
ˆ
S1

(∇ × A) · dS +
ˆ
S2

(∇ × A) · dS (A.38)
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上式左辺は，同じ積分路で向きが逆ゆえゼロである．よって，

0 =
ˆ
S1+S2

(∇ × A) · dS (A.39)

上式右辺の S1 + S2 は閉曲面を表し，この体積を微小 ∆v として極限を求めると，∇ × A

の発散（div）ゆえ，

lim
∆v→0

1
∆v

ˆ
S1+S2

(∇ × A) · dS = ∇ ·
(
∇ × A

)
= 0 (A.40)

よって，

∇ ·
(
∇ × A

)
= 0 (A.41)

　式 (A.34)もストークスの定理を用いて証明しよう．まず，ストークスの定理を ∇φに
対して用いると，

¨
S

{
∇ × (∇φ)

}
· ndS =

˛
C

(∇φ) · sds =
˛
C

∂φ

∂s
ds =

[
φ
]
C

= 0 (A.42)

この面を微小 ∆S として極限を求めてもゼロであり，右辺についてはベクトル ∇φの回転
（rot）ゆえ，

lim
∆S→0

1
∆S

¨
∆S

{
∇ × (∇φ)

}
· ndS = lim

∆S→0

1
∆S

˛
C

(∇φ) · ds

=
{
∇ × (∇φ)

}
· n

= 0 (A.43)

面のとり方は任意であり，その法線ベクトル nも任意ゆえ，次式が成り立つ．

∇ × (∇φ) = 0 (A.44)

【例題 1】
直角座標系 (x, y, z)において，式 (A.35)の左辺から右辺を導出せよ．

略解　直角座標系 (x, y, z)では，

∇ ·
(
∇ × A

)
= ∂

∂x

(
∇ × A

)
x

+ ∂

∂y

(
∇ × A

)
y

+ ∂

∂z

(
∇ × A

)
z

= ∂

∂x

(
∂Az
∂y

− ∂Ay
∂z

)
+ ∂

∂y

(
∂Ax
∂z

− ∂Az
∂x

)
+ ∂

∂z

(
∂Ay
∂x

− ∂Ax
∂y

)

= ∂2Az
∂x∂y

− ∂2Ay
∂x∂z

+ ∂2Ax
∂y∂z

− ∂2Az
∂y∂x

+ ∂2Ay
∂z∂x

− ∂2Ax
∂z∂y

= 0 (A.45)
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【例題 2】
直角座標系 (x, y, z)において，式 (A.34)の左辺から右辺を導出せよ．

略解　まず，x成分は，{
∇ ×

(
∇φ

)}
x

= ∂

∂y

(
∇φ

)
z

− ∂

∂z

(
∇φ

)
y

= ∂

∂y

(
∂φ

∂z

)
− ∂

∂z

(
∂φ

∂y

)
= 0 (A.46)

同様にして，y 成分，z 成分も次のようになる．{
∇ ×

(
∇φ

)}
y

= 0 (A.47){
∇ ×

(
∇φ

)}
z

= 0 (A.48)

よって，

∇ × (∇φ) = 0 (A.49)

【例題 3】
直角座標系 (x, y, z)において，式 (A.29)の左辺から右辺を導出せよ．

略解　左辺の x成分は，{
∇ ×

(
φa
)}

x
= ∂(φaz)

∂y
− ∂(φay)

∂z

=
(
∂φ

∂y
az + φ

∂az
∂y

)
−
(
∂φ

∂z
ay + φ

∂ay
∂z

)

=
(
∂φ

∂y
az − ∂φ

∂z
ay

)
+ φ

(
∂az
∂y

− ∂ay
∂z

)

=
{(

∇φ
)

× a
)}

x
+ φ

(
∇ × a

)
x

(A.50)

同様にして，y 成分および z 成分は次のようになる．{
∇ ×

(
φa
)}

y
=
{(

∇φ
)

× a
)}

y
+ φ

(
∇ × a

)
y

(A.51){
∇ ×

(
φa
)}

z
=
{(

∇φ
)

× a
)}

z
+ φ

(
∇ × a

)
z

(A.52)

これらを合成すれば右辺の式が得られる．

∇ ×
(
φa
)

=
(
∇φ

)
× a + φ∇ × a (A.53)
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【例題 4】
式 (A.33)を導出せよ．

略解　ベクトル演算と ∇を用いた演算との対比を考え，ベクトル積に関わる公式

A × (B × C) = B(A · C) − (A · B)C (A.54)

において，ベクトルA，B を∇に置き換え，C を aに変えると，次式が得られる．

∇ × (∇ × a) = ∇(∇ · a) − (∇ · ∇)a
= ∇(∇ · a) − ∇2a (A.55)

　また，直角座標系において，左辺から右辺を導出する．まず，x成分については，

{∇ × (∇ × a)}x = ∂

∂y
(∇ × a)z − ∂

∂z
(∇ × a)y

= ∂

∂y

(
∂ay
∂x

− ∂ax
∂y

)
− ∂

∂z

(
∂ax
∂z

− ∂az
∂x

)

= ∂

∂x

(
∂ax
∂x

+ ∂ay
∂y

+ ∂az
∂z

)
−
(
∂2ax
∂x2 + ∂2ax

∂y2 + ∂2ax
∂z2

)

= ∂

∂x
(∇ · a) − ∇2ax (A.56)

同様にして，y 成分および z 成分は次のようになる．

{∇ × (∇ × a)}y = ∂

∂y
(∇ · a) − ∇2ay (A.57)

{∇ × (∇ × a)}z = ∂

∂z
(∇ · a) − ∇2az (A.58)

これらを合成すれば右辺の式が得られる．

∇ × (∇ × a) = {∇ × (∇ × a)}xi + {∇ × (∇ × a)}yj + {∇ × (∇ × a)}zk

=
{
∂

∂x
(∇ · a) − ∇2ax

}
i +

{
∂

∂y
(∇ · a) − ∇2ay

}
j

+
{
∂

∂z
(∇ · a) − ∇2az

}
k

=
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
(∇ · a) −

{
(∇2ax)i + (∇2ay)j + (∇2az)k

}
= ∇(∇ · a) − ∇2a (A.59)

A.3 直交曲線座標系
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A.3.1 直交曲線座標の定義

直交曲線座標（orthogonal curvilinear coordinates）(u1, u2, u3) における位置ベクトルを
rとすると，この点から微小量 du1，du2，du3だけ変位した点 (u1 +du1, u2 +du2, u3 +du3)
までの変位ベクトル dr は，次のようになる．

dr = ∂r

∂u1
du1 + ∂r

∂u2
du2 + ∂r

∂u3
du3 (A.60)

いま，

ai ≡ ∂r

∂ui
(i = 1, 2, 3) (A.61)

とおくと，dr は，

dr = a1du1 + a2du2 + a3du3 (A.62)

このようにして定義した ai は，直交曲線座標の成分 ui に沿うベクトルであるが，単位ベク
トルとは限らない．ここでは，直交性 ai · aj = 0 (i 6= j) は成り立つものとする．まず，ai

の大きさを１とした単位ベクトル ii を

ii ≡ ai√
ai · ai

(i = 1, 2, 3) (A.63)

で定義する．互いに直交するので，

ii · ij = δij (A.64)

また，ai の大きさ hi(i = 1, 2, 3)は，

hi = √
ai · ai =

√
∂r

∂ui
· ∂r

∂ui
(i = 1, 2, 3) (A.65)

ここで，hi は ui の測度係数（metrical coefficients, metric coefficients）という．これより，

ai = hiii (i = 1, 2, 3) (A.66)

さて，ii (i = 1, 2, 3)に関するベクトル積は，

i1 × i2 = i3 (A.67)
i2 × i3 = i1 (A.68)
i3 × i1 = i2 (A.69)

であるから，ai (i = 1, 2, 3)に関するベクトル積は，

a1 × a2 = h1i1 × h2i2 = h1h2i3 (A.70)
a2 × a3 = h2i2 × h3i3 = h2h3i1 (A.71)
a3 × a1 = h3i3 × h1i1 = h3h1i2 (A.72)
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また，

dr = h1i1du1 + h2i2du2 + h3i3du3

=
3∑
i=1

hiiidui =
3∑
i=1

dsi (A.73)

上式の dsi はベクトル線要素 dsi を示し，

dsi = hiiidui ≡ iidsi (i = 1, 2, 3) (A.74)

とおけば，線要素（line element）dsi (i = 1, 2, 3)が定義できる．

ds1 = h1du1 (A.75)
ds2 = h2du2 (A.76)
ds3 = h3du3 (A.77)

これより，

dr · dr = ds2
1 + ds2

2 + ds2
3

= h2
1du

2
1 + h2du

2
2 + h2

3du
2
3 (A.78)

また，ベクトル面要素 dai (i = 1, 2, 3)は，

da1 = ds2 × ds3 = h2i2du2 × h3i3du3 = h2h3i1du2du3

≡ da1i1 (A.79)
da2 = ds3 × ds1 = h3i3du3 × h1i1du1 = h3h1i2du3du1

≡ da2i2 (A.80)
da3 = ds1 × ds2 = h1i1du1 × h2i2du2 = h1h2i3du1du2

≡ da3i3 (A.81)

u3-

u2-

u1- u1=

ds3

ds2

図 A.1. ベクトル面要素
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面要素（surface element）dai (i = 1, 2, 3)は，

da1 = h2h3du2du3 (A.82)
da2 = h3h1du3du1 (A.83)
da3 = h1h2du1du2 (A.84)

また，体積要素（volume element）dv は，

dv = ds1 · (ds2 × ds3) = h1i1du1 · h2h3i1du2du3

= h1h2h3du1du2du3 (A.85)

いま，直交曲線座標系 (u1, u2, u3)の各成分が，直角座標系 (x, y, z)の各成分の関数として
次のように与えられている場合を考える．

u1 = f1(x, y, z) (A.86)
u2 = f2(x, y, z) (A.87)
u3 = f3(x, y, z) (A.88)

(x, y, z)の代わりに (x1, x2, x3)とすると，

u1 = f1(x1, x2, x3) (A.89)
u2 = f2(x1, x2, x3) (A.90)
u3 = f3(x1, x2, x3) (A.91)

逆の関係が次のように一価関数として

x1 = x1(u1, u2, u3) (A.92)
x2 = x2(u1, u2, u3) (A.93)
x3 = x3(u1, u2, u3) (A.94)

で与えられているとき，位置ベクトル r は，

r = x1(u1, u2, u3)i + x2(u1, u2, u3)j + x3(u1, u2, u3)k (A.95)

ただし，i，j，kは，x1，x2，x3 方向の各々単位ベクトルである．これより，ui (i = 1, 2, 3)
で微分すると，

∂r

∂ui
= ∂x1

∂ui
i + ∂x2

∂ui
j + ∂x3

∂ui
k (i = 1, 2, 3) (A.96)

したがって，hi (i = 1, 2, 3)は，

hi =
√
∂r

∂ui
· ∂r

∂ui
=

√√√√(∂x1

∂ui

)2

+
(
∂x2

∂ui

)2

+
(
∂x3

∂ui

)2

=

√√√√√ 3∑
j=1

(
∂xj
∂ui

)2

(A.97)
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A.3.2 勾配 (gradient)

勾配は，スカラ場の変化の割合をベクトルで表したもので，スカラ関数を Φ とすると，
∇Φ あるいは grad Φ と書く．勾配∇Φ（あるいは grad Φ）の方向は，スカラ関数の変化の
割合が最大となる向きを示し，等高線表示においてはその等高線に垂直にとった方向とな
る．また，大きさは，変化の割合の最大値を意味している．
直交曲線座標 (u1, u2, u3)の関数としてスカラー Φ(u1, u2, u3)が与えられているとき，dr
だけ微小変位したときの Φの微小変化 dΦは，次のように表すことができる．

dΦ = ∂Φ
∂u1

du1 + ∂Φ
∂u2

du2 + ∂Φ
∂u3

du3 =
3∑
i=1

∂Φ
∂ui

dui (A.98)

一方，勾配 (gradient)の定義より，dΦ = ∇Φ · dr．よって，

∇Φ · dr =
3∑
i=1

∂Φ
∂ui

dui (A.99)

ただし，dr は，式 (A.73)より，

dr =
3∑
i=1

hiiidui (A.100)

両辺に ij のスカラー積をとると，

ij · dr = ij ·
3∑
i=1

hiiidui = hjduj (A.101)

これより，dui は，

dui = ii · dr
hi

(A.102)

したがって，

∇Φ · dr =
3∑
i=1

∂Φ
∂ui

ii · dr
hi

(A.103)

∴

(
∇Φ −

3∑
i=1

ii
hi

∂Φ
∂ui

)
· dr = 0 (A.104)

上式が任意の dr に対して成り立つためには，

∇Φ −
3∑
i=1

ii
hi

∂Φ
∂ui

= 0 (A.105)

よって，スカラー関数 Φの勾配∇Φは，

∇Φ =
3∑
i=1

1
hi

∂Φ
∂ui

ii (A.106)
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A.3.3 発散 (divergence)

発散は，ベクトル場の源がどのように分布しているかを表す目安で，ベクトル関数を F

とすると，∇ · F あるいは div F と書く．発散の定義式は，

∇ · F = lim
S→0

1
V

‹
S

F · ndS (A.107)

で与えられ，単位体積当たり閉曲面の表面を通り抜ける正味の fluxの量（流束）を求める
ものである．ただし，nは曲面の法線ベクトル，積分記号

‚
は閉曲面 S にわたる面積分を

表している．
いま，ベクトル F が，直交曲線座標系の単位ベクトル ii (i = 1, 2, 3)を用いて，次式で
与えられているとする．

F = F1i1 + F2i2 + F3i3 =
3∑
i=1

Fiii (A.108)

このとき，u1-曲面（u1 一定），u2-曲面（u2 一定），u3-曲面（u3 一定）で囲まれる微小体積
から出るこのベクトル F の流束を考えてみる．

u
2-

u 1
-

u
3
-

ds3

ds1

(u1, u2, u3)

(u1+du1, u2+du2, u3+du3)

図 A.2. 微小な体積要素

まず，u2 曲面上の面要素から出るベクトル F の流束は，

F · (ds3 × ds1)
∣∣∣∣
u2+du2

+ F · (−ds3 × ds1)
∣∣∣∣
u2

' F · (ds3 × ds1)
∣∣∣∣
u2

+ ∂

∂u2
{F · (ds3 × ds1)}du2 − F · (ds3 × ds1)

∣∣∣∣
u2

= ∂

∂u2
{F · (ds3 × ds1)}du2 (A.109)

ただし，du2 は座標の増分を意味するもので，直接，線要素になるわけではない．ここで，

F · (ds3 × ds1) =
{ 3∑
i=1

Fiii

}
· (h3h1i2du3du1)

= F2h3h1du3du1 (A.110)
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より，

∂

∂u2
{F · (ds3 × ds1)}du2 = ∂

∂u2
{F2h3h1} du1du2du3 (A.111)

同様にして，u3 曲面上の面要素から出るベクトル F の流束は，

∂

∂u3
{F3h1h2} du1du2du3

また，u1 曲面上の面要素から出るベクトル F の流束は，

∂

∂u1
{F1h2h3} du1du2du3

よって，u1-曲面，u2-曲面，u3-曲面で囲まれる微小体積から出るベクトル F の流束は，こ
れらの総和をとって次のようになる．[

∂

∂u1
{h2h3F1} + ∂

∂u2
{h3h1F2} + ∂

∂u3
{h1h2F3}

]
· du1du2du3

= 1
h1h2h3

[
∂

∂u1
{h2h3F1} + ∂

∂u2
{h3h1F2} + ∂

∂u3
{h1h2F3}

]
dv (A.112)

発散の定義より，

∇ · F = 1
h1h2h3

[
∂

∂u1
{h2h3F1} + ∂

∂u2
{h3h1F2} + ∂

∂u3
{h1h2F3}

]
(A.113)

A.3.4 ラプラシアン（Laplacian operator）

∇ · ∇Φ = ∇2Φの ∇2（ラプラシアン）を考える．いま，∇Φをベクトル F ′ とおき，

∇Φ =
3∑
i=1

1
hi

∂Φ
∂ui

ii ≡
3∑
i=1

F ′
i ii ≡ F ′ (A.114)

ベクトル F ′ の成分 F ′
i は，

F ′
i = 1

hi

∂Φ
∂ui

(i = 1, 2, 3) (A.115)

ベクトル F ′ の発散を求めれば，

∇ · F ′ = 1
h1h2h3

[
∂

∂u1
{h2h3F

′
1} + ∂

∂u2
{h3h1F

′
2} + ∂

∂u3
{h1h2F

′
3}
]

(A.116)

このとき，

∇ · F ′ = ∇ · ∇Φ = ∇2Φ (A.117)

205



したがって，

∇2Φ = 1
h1h2h3

{
∂

∂u1

(
h2h3

h1

∂Φ
∂u1

)

+ ∂

∂u2

(
h3h1

h2

∂Φ
∂u2

)
+ ∂

∂u3

(
h1h2

h3

∂Φ
∂u3

)}
(A.118)

A.3.5 回転 (rotation)

回転は，ベクトル関数を F とすると，∇ × F，rot F あるいは curl F と書く．このベク
トルの回転は，単位面積当たりの最大の回転量（渦）を与える面に垂直な方向をもち，回転
量の最大値を大きさとするベクトルであり，この垂直な方向に沿う単位ベクトルを nとお
くと，その大きさは，

(∇ × F ) · n = lim
∆C→0

1
S

‹
C

F · ds (A.119)

で与えられる．このとき，∇ × F を，

∇ × F =
3∑
i=1

{(∇ × F ) · ii}ii (A.120)

とおくと，次のように単位ベクトル ii に直交する微小面 Si の周回積分路 Ci に沿って計算
すれば，∇ × F の各成分が得られる．

(∇ × F ) · ii = lim
∆Ci→0

1
Si

‹
Ci

F · ds (i = 1, 2, 3) (A.121)

u
2-

u 1
-

u
3
-

(u1, u2+du2, u3+du3)

(u1, u2+du2, u3)
(u1, u2, u3)

12

3

4

図 A.3. 微小な周回積分路 C1

そこで，まず，(∇ × F ) · i1 について求めることにする．このとき，周回積分路 C1 のう
ち，同図の (1)の (u1, u2 + du2, u3)から (u1, u2 + du2, u3 + du3) までの線積分（u3-曲線上）
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は，線要素 ds3 = h3du3 より，

F3ds3

∣∣∣∣
u2+du2

' F3h3du3 + ∂

∂u2
(F3h3du3)du2

また，同図の (2)の (u1, u2, u3 + du3)から (u1, u2, u3)までの線積分（u3-曲線上）は，

−F3ds3

∣∣∣∣
u2

= −F3h3du3

同図の (3)の (u1, u2 + du2, u3 + du3)から (u1, u2, u3 + du3)までの線積分（u2-曲線上）は，
線要素 ds2 = h2du2 より，

−F2ds2

∣∣∣∣
u3+du3

' −F2h2du2 − ∂

∂u3
(F2h2du2)du3

同図の (4)の (u1, u2, u3)から (u1, u2 + du2, u3)までの線積分は，

F2ds2

∣∣∣∣
u3

= F2h2du2

これらの総和をとれば，C1 の周回積分が得られ次のようになる．{
∂(h3F3)
∂u2

− ∂(h2F2)
∂u3

}
du2du3

また，C1 に囲まれた面積は，面要素 da1 に対応し，再記すると，da1 = h2h3du2du3．した
がって，

(∇ × F ) · i1 =

{
∂(h3F3)
∂u2

− ∂(h2F2)
∂u3

}
du2du3

h2h3du2du3

= 1
h2h3

{
∂(h3F3)
∂u2

− ∂(h2F2)
∂u3

}
(A.122)

同様にして，

(∇ × F ) · i2 = 1
h3h1

{
∂(h1F1)
∂u3

− ∂(h3F3)
∂u1

}
(A.123)

(∇ × F ) · i3 = 1
h1h2

{
∂(h2F2)
∂u1

− ∂(h1F1)
∂u2

}
(A.124)
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よって，∇ × F は次のようになる．

∇ × F = 1
h2h3

{
∂(h3F3)
∂u2

− ∂(h2F2)
∂u3

}
i1

+ 1
h3h1

{
∂(h1F1)
∂u3

− ∂(h3F3)
∂u1

}
i2

+ 1
h1h2

{
∂(h2F2)
∂u1

− ∂(h1F1)
∂u2

}
i3

= 1
h1h2h3

∣∣∣∣∣∣∣∣∣∣∣

h1i1 h2i2 h3i3
∂

∂u1

∂

∂u2

∂

∂u3
h1F1 h2F2 h3F3

∣∣∣∣∣∣∣∣∣∣∣
(A.125)

以上をまとめると，

∇Φ = 1
h1

∂Φ
∂u1

i1 + 1
h2

∂Φ
∂u2

i2 + 1
h3

∂Φ
∂u3

i3

=
3∑
i=1

1
hi

∂Φ
∂ui

ii (A.126)

∇ · F = 1
h1h2h3

[
∂

∂u1
{h2h3F1} + ∂

∂u2
{h3h1F2} + ∂

∂u3
{h1h2F3}

]

= 1
h1h2h3

3∑
i=1

∂

∂ui
{hjhkFi} (A.127)

∇2Φ = 1
h1h2h3

{
∂

∂u1

(
h2h3

h1

∂Φ
∂u1

)
+ ∂

∂u2

(
h3h1

h2

∂Φ
∂u2

)
+ ∂

∂u3

(
h1h2

h3

∂Φ
∂u3

)}

= 1
h1h2h3

3∑
i=1

∂

∂ui

(
hjhk
hi

∂Φ
∂ui

)
(A.128)

∇ × F = 1
h2h3

{
∂(h3F3)
∂u2

− ∂(h2F2)
∂u3

}
i1

+ 1
h3h1

{
∂(h1F1)
∂u3

− ∂(h3F3)
∂u1

}
i2

+ 1
h1h2

{
∂(h2F2)
∂u1

− ∂(h1F1)
∂u2

}
i3

= 1
h1h2h3

3∑
i=1

hi

{
∂(hkFk)
∂uj

− ∂(hjFj)
∂uk

}
ii (A.129)
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また，(u1, u2)に関する 2次元微分演算子∇s の場合（導出省略），

∇s · F = 1
h1h2

[
∂

∂u1
{h2F1} + ∂

∂u2
{h1F2}

]
(A.130)

∇s × F = 1
h1h2

{
∂(h2i1 × F )

∂u1
− ∂(h1i2 × F )

∂u2

}
(A.131)

A.3.6 球座標系

球座標系（Spherical coordinates system）(r, θ, ϕ) では，

u1 = r, u2 = θ, u3 = ϕ (A.132)

とおくと，位置ベクトル r は次のようになる．

r = r
{

sin θ(cosϕ i + sinϕ j) + cos θ k
}

(A.133)

これより，
∂r

∂u1
= ∂r

∂r
= sin θ(cosϕ i + sinϕ j) + cos θ k (A.134)

∂r

∂u2
= ∂r

∂θ
= r

{
cos θ(cosϕ i + sinϕ j) − sin θ k

}
(A.135)

∂r

∂u3
= ∂r

∂ϕ
= r sin θ(− sinϕ i + cosϕ j) (A.136)

よって，h1，h2，h3 は，

h1 =
√
∂r

∂u1
· ∂r

∂u1
=
√
∂r

∂r
· ∂r

∂r
= 1 (A.137)

h2 =
√
∂r

∂u2
· ∂r

∂u2
=
√
∂r

∂θ
· ∂r

∂θ
= r (A.138)

h3 =
√
∂r

∂u3
· ∂r

∂u3
=
√
∂r

∂ϕ
· ∂r

∂ϕ
= r sin θ (A.139)

また，r, θ, ϕ に沿う単位ベクトル ur，uθ，uϕ は，上の結果を基にして各単位ベクトルを求
めると次のようになる．

ur = i1 = 1
h1

∂r

∂u1
= ∂r

∂r
= sin θ(cosϕ i + sinϕ j) + cos θ k (A.140)

uθ = i2 = 1
h2

∂r

∂u2
= 1
r

∂r

∂θ
= cos θ(cosϕ i + sinϕ j) − sin θ k (A.141)

uϕ = i3 = 1
h3

∂r

∂u3
= 1
r sin θ

∂r

∂ϕ
= − sinϕ i + cosϕ j (A.142)
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スカラ関数 Φ，ベクトル関数 F = Frur + Fθuθ + Fϕuϕ について，次式が成り立つ．

∇Φ = ∂Φ
∂r

ur + 1
r

∂Φ
∂θ

uθ + 1
r sin θ

∂Φ
∂ϕ

uϕ (A.143)

∇2Φ = 1
r2

∂

∂r

(
r2∂Φ
∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂Φ

∂θ

)
+ 1
r2 sin2 θ

∂2Φ
∂ϕ2 (A.144)

∇ · F = 1
r2

∂

∂r

(
r2Fr

)
+ 1
r sin θ

∂

∂θ
(sin θ · Fθ) + 1

r sin θ
∂Fϕ
∂ϕ

(A.145)

∇ × F = 1
r sin θ

{
∂

∂θ
(sin θFϕ) − ∂Fθ

∂ϕ

}
ur

+
{

1
r sin θ

∂Fr
∂ϕ

− 1
r

∂

∂r
(rFϕ)

}
uθ + 1

r

{
∂

∂r
(rFθ) − ∂Fr

∂θ

}
uϕ

=

∣∣∣∣∣∣∣∣∣∣∣

ur ruθ r sin θuϕ

∂

∂r

∂

∂θ

∂

∂ϕ

Fr rFθ r sin θFϕ

∣∣∣∣∣∣∣∣∣∣∣
(A.146)

A.3.7 円筒座標系

円筒座標系（Cylindrical coordinates system）(ρ, φ, z) では，

u1 = ρ, u2 = φ, u3 = z (A.147)

とおくと，位置ベクトル r は次のようになる．

r = ρ(cosφ i + sinφ j) + z k (A.148)

これより，
∂r

∂u1
= ∂r

∂ρ
= cosφ i + sinφ j (A.149)

∂r

∂u2
= ∂r

∂φ
= ρ(− sinφ i + cosφ j) (A.150)

∂r

∂u3
= ∂r

∂z
= k (A.151)

よって，h1，h2，h3 は，

h1 =
√
∂r

∂u1
· ∂r

∂u1
=
√
∂r

∂ρ
· ∂r

∂ρ
= 1 (A.152)

h2 =
√
∂r

∂u2
· ∂r

∂u2
=
√
∂r

∂φ
· ∂r

∂φ
= ρ (A.153)

h3 =
√
∂r

∂u3
· ∂r

∂u3
=
√
∂r

∂z
· ∂r

∂z
= 1 (A.154)
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また，ρ, φ, z に沿う単位ベクトル uρ，uφ，uz は，上の結果より，

uρ = i1 = 1
h1

∂r

∂u1
= ∂r

∂ρ
= cosφ i + sinφ j (A.155)

uφ = i2 = 1
h2

∂r

∂u2
= 1
ρ

∂r

∂φ
= − sinφ i + cosφ j (A.156)

uz = i3 = 1
h3

∂r

∂u3
= ∂r

∂z
= k (A.157)

スカラ関数 Φ，ベクトル関数 F = Fρuρ + Fφuφ + Fzuz について，

∇Φ = ∂Φ
∂ρ

uρ + 1
ρ

∂Φ
∂φ

uφ + ∂Φ
∂z

uz (A.158)

∇2Φ = 1
ρ

∂

∂ρ

(
ρ
∂Φ
∂ρ

)
+ 1
ρ2

∂2Φ
∂φ2 + ∂2Φ

∂z2 (A.159)

∇ · F = 1
ρ

∂

∂ρ
(ρFρ) + 1

ρ

∂Fφ
∂φ

+ ∂Fz
∂z

(A.160)

∇ × F =
(

1
ρ

∂Fz
∂φ

− ∂Fφ
∂z

)
uρ +

(
∂Fρ
∂z

− ∂Fz
∂ρ

)
uφ + 1

ρ

{
∂

∂ρ
(ρFφ) − ∂Fρ

∂φ

}
uz

=

∣∣∣∣∣∣∣∣∣∣∣

uρ ρuφ uz

∂

∂ρ

∂

∂φ

∂

∂z

Fρ ρFφ Fz

∣∣∣∣∣∣∣∣∣∣∣
(A.161)

A.3.8 直角座標系

直角座標系（Rectangular coordinates system）(x, y, z) では，

u1 = x, u2 = y, u3 = z (A.162)

よって，

h1 = 1, h2 = 1, h3 = 1 (A.163)
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スカラ関数 Φ，ベクトル関数 F = Fxux + Fyuy + Fzuz について，

∇Φ = ∂Φ
∂x

ux + ∂Φ
∂y

uy + ∂Φ
∂z

uz (A.164)

∇2Φ = ∂2ax
∂x2 + ∂2ay

∂y2 + ∂2az
∂z2 (A.165)

∇ · F = ∂Fx
∂x

+ ∂Fy
∂y

+ ∂Fz
∂z

(A.166)

∇ × F =
(
∂Fz
∂y

− ∂Fy
∂z

)
ux +

(
∂Fx
∂z

− ∂Fz
∂x

)
uy +

(
∂Fy
∂x

− ∂Fx
∂y

)
uz

=

∣∣∣∣∣∣∣∣∣∣∣

ux uy uz

∂

∂x

∂

∂y

∂

∂z

Fx Fy Fz

∣∣∣∣∣∣∣∣∣∣∣
(A.167)

A.4 ガウスの発散定理の応用

A.4.1 ガウスの発散定理

ガウスの発散定理（divergence theorem）は，次式で与えられる．
˚

V

∇ · a dV =
‹
S

a · n dS (A.168)

ただし，積分記号
¸
の ◦は積分経路が閉曲面であることを示し，nは閉曲面上の外向き法

線ベクトルである．

A.4.2 ガウスの回転定理

いま，ベクトル F を F = Fxi + Fyj + Fzk で定義し，

a ≡ Fzj − Fyk (A.169)

とおくと，ガウスの発散定理の式 (A.168)の左辺の被積分関数は次のようになる．

∇ · a =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
· (Fzj − Fyk)

= ∂Fz
∂y

− ∂Fy
∂z

= (∇ × F ) · i (A.170)
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次に，法線ベクトル nを，

n = nxi + nyj + nzk (A.171)

とおくと，ガウスの発散定理の右辺の被積分関数は次のようになる．

a · n = (Fzj − Fyk) · (nxi + nyj + nzk)
= Fzny − Fynz

= (n × F ) · i (A.172)

これらの結果をガウスの発散定理の式に代入すると，次のようになる．
˚

V

(∇ × F ) · i dV =
‹
S

(n × F ) · i dS = −
‹
S

(F × n) · i dS (A.173)

同様にして，j，k に関する式が得られるので，次のガウスの回転定理（curl theorem）が
得られる．

˚
V

(∇ × F ) dV = −
‹
S

(F × n) dS (A.174)

A.4.3 ガウスの勾配定理

いま，bを定ベクトルとして，a ≡ fbとおくと，ガウスの発散定理の式 (A.168)の左辺
の被積分関数は次のようになる．

∇ · a = ∇ · (fb) = (∇f) · b (A.175)

このとき，ガウスの発散定理は次のようになる．
˚

V

(∇f) · b dV =
‹
S

(fb) · n dS (A.176)

ここで，bは定ベクトルゆえ，

b ·
˚

V

∇f dV = b ·
‹
S

fn dS (A.177)

よって，次のガウスの勾配定理（gradient theorem）が得られる．
˚

V

∇f dV =
‹
S

fn dS (A.178)

A.4.4 2次元発散定理

　軸方向を z 軸（単位ベクトルは az）とする円柱領域 V を考える．この軸に直交する面
内の 2次元ベクトルAt，および 2次元微分演算子∇t を用いると，Aおよび∇は，次のよ
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うになる．

A ≡ At + Azaz (A.179)
At ≡ Atat (A.180)

∇ = ∇t + ∂

∂z
az (A.181)

これらを 3次元の発散定理に代入すると，
˚

V

(
∇t + ∂

∂z
az

)
· (At + Azaz) dV =

‹
S

(At + Azaz) · n dS (A.182)

領域 V を囲む閉曲面 S を円筒にとり，z = z1, z2 における断面（z 軸に直交する面）を S1，
S2 とすると，ˆ (¨

S

∇t · AtdS

)
dz +

¨
S

(ˆ
∂Az
∂z

dz

)
dS

=
¨
S1

−Az(z1)dS +
¨
S2

Az(z2)dS +
ˆ (˛

C

At · ndσ

)
dz (A.183)

面 S2 が面 S1 に十分接近しているとき (z2 = z1 + ∆z) ，Az(z2)を次のように近似する．

Az(z2) ' Az(z1) + ∂Az
∂z

∆z (A.184)

これより，
ˆ (¨

S

∇t · AtdS

)
dz +

¨
S

(
Az(z1) + ∂Az

∂z
∆z − Az(z1)

)
dS

'
¨
S

−Az(z1)dS +
¨
S

(
Az(z1) + ∂Az

∂z
∆z
)
dS +

ˆ (˛
C

At · ndσ

)
dz (A.185)

上式において ∆z → 0の極限をとると，次のように 2次元発散定理が得られる．
¨
S

∇t · AtdS =
˛
C

At · n dσ (A.186)

ただし，面 S およびその周回積分経路 C は平面上にとられ，nは閉じた経路 C の外向きの
法線ベクトルを示す．または，Aを用いて，

¨
S

∇t · AdS =
˛
C

A · n dσ (A.187)

A.4.5 2次元勾配定理

¨
S

∇tfdS =
˛
C

fn dσ (A.188)
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A.5 ダイアディック公式

ダイアディックの公式（dyadic identities）をまとめると，次のようになる．

a · (b × ¯̄c) = −b · (a × ¯̄c) = (a × b) · ¯̄c (A.189)
a × (b × ¯̄c) = b · (a × ¯̄c) − (a · b)¯̄c (A.190)
∇(ab) = a∇b + (∇a)b (A.191)

∇ · (a¯̄b) = a∇ · ¯̄b + (∇a) · ¯̄b (A.192)

∇ × (a¯̄b) = a∇ × ¯̄b + (∇a) × ¯̄b (A.193)
∇ × (∇ × ¯̄a) = ∇(∇ · ¯̄a) + ∇2 ¯̄a (A.194)
∇ · (∇ × ¯̄a) = 0 (A.195)

a · ¯̄b = (¯̄b)T · a (A.196)

a × ¯̄b = −
[
(¯̄b)T × a

]T
(A.197)

(¯̄c)T · (a × ¯̄b) = −(a × ¯̄c)T · ¯̄b (A.198)

A.6 グリーンの定理のまとめ

A.6.1 グリーンの第一定理

グリーンの第一定理（first Green’s theorems）をまとめると，次のようになる．

Scalar form

˚
V

(f∇2g + ∇f · ∇g)dV =
‹
S

f
∂g

∂n
dS

(
=
˛
S

n · (f∇g)dS
)

(A.199)

Vector form

˚
V

{
(∇ × G) · (∇ × F ) − F · ∇ × (∇ × G)

}
dV

=
‹
S

n · (F × ∇ × G)dS (A.200)
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Composite vector-dyadic form

˚
V

{
(∇ × F ) · (∇ × ¯̄G) − F · ∇ × (∇ × ¯̄G)

}
dV

=
‹
S

n · (F × ∇ × ¯̄G)dS (A.201)

Dyadic form

˚
V

{
(∇ × ¯̄G)T · (∇ × ¯̄F ) − (∇ × ∇ × ¯̄G)T · ¯̄F

}
dV

=
‹
S

(∇ × ¯̄G)T · (n × ¯̄F )dS (A.202)

A.6.2 グリーンの第ニ定理

グリーンの第ニ定理（second Green’s theorems）をまとめると，次のようになる．

Scalar form

˚
V

(f∇2g − g∇2f)dV =
‹
S

(
f
∂g

∂n
− g

∂f

∂n

)
dS (A.203)

Vector form, Stratton’s theorem

˚
V

{
F · (∇ × ∇ × G) − G · (∇ × ∇ × F )

}
dV

=
‹
S

n ·
{
G × (∇ × F ) − F × (∇ × G)

}
dS (A.204)

Composite vector-dyadic form

˚
V

{
F · (∇ × ∇ × ¯̄G) − (∇ × ∇ × F ) · ¯̄G

}
dV

= −
‹
S

n ·
{
(∇ × F ) × ¯̄G + F × (∇ × ¯̄G)

}
dS (A.205)
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Modified composite vector-dyadic form

˚
V

{
F · (∇ × ∇ × ¯̄G) − (∇ × ∇ × F ) · ¯̄G

}
dV

= −
‹
S

{
(n × ∇ × F ) · ¯̄G + (n × F ) · ∇ × ¯̄G

}
dS (A.206)

Dyadic form

˚
V

{
(∇ × ∇ × ¯̄G)T · ¯̄F − ¯̄GT · (∇ × ∇ × ¯̄F )

}
dV

= −
‹
S

{ ¯̄GT · (n × ∇ × ¯̄F ) + (∇ × ¯̄G)T · (n × ¯̄F )
}
dS (A.207)

A.7 関連する不定積分

A.7.1 置換積分 t = x+
√
x2 + a2

次の不定積分を導出，確認しよう．ˆ
dx√
x2 + a2

= ln
∣∣∣x+

√
x2 + a2

∣∣∣ (A.208)

まず，t = x+
√
x2 + a2 とおくと，

dt

dx
= 1 + 1

2
(
x2 + a2

)− 1
2 2x = 1 + x√

x2 + a2

=
√
x2 + a2 + x√
x2 + a2

= t√
x2 + a2

(A.209)

これより，

dt

t
= dx√

x2 + a2
(A.210)

よって，次のように不定積分が行える．ˆ
dx√
x2 + a2

=
ˆ
dt

t
= ln |t| = ln

∣∣∣x+
√
x2 + a2

∣∣∣ (A.211)

逆に，右辺を xで微分すると，
d

dx

[
ln
∣∣∣x+

√
x2 + a2

∣∣∣] = dt

dx

t

dt
(ln |t|)

= t√
x2 + a2

1
t

= 1√
x2 + a2

(A.212)
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A.8 Cauchyの積分表示式

A.8.1 Cauchyの定理

複素数 z，および複素関数 f(z)が，

z = x+ jy (A.213)
f(z) = u(x, y) + jv(x, y) (A.214)

で表されるとき，関数 f(z)の複素積分について，次のような式変形ができる．
ˆ
C

f(z)dz =
ˆ
C

(u+ jv)d(x+ jy)

=
ˆ
C

(u+ jv)(dx+ jdy)

=
ˆ
C

(udx− vdy) + j

ˆ
C

(vdx+ udy) (A.215)

　さらに変形するにあたって必須の関係式を導出しておく．まず，ストークスの定理は，
¨
S

∇ × A · ndS =
˛
C

A · ds (A.216)

ベクトルAは任意でよいので，次のようにおく．

A = Axux + Ayuy (A.217)

また，面 S のとり方も任意でよいので xy面にとり，法線方向を z 軸方向にとると，n = uz

より，

(∇ × A) · n = {∇ × (Axux + Ayuy)} · uz

= {(∇Ax) × ux} · uz + {(∇Ay) × uy} · uz

= (ux × uz) · (∇Ax) + (uy × uz) · (∇Ay)
= −uy · (∇Ax) + ux · (∇Ay)

= −∂Ax
∂y

+ ∂Ay
∂x

(A.218)

また，

A · ds = (Axux + Ayuy) · (uxdx+ uydy) = Axdx+ Aydy (A.219)

よって，ストークスの定理は，左辺と右辺を交換して次のようになる．
˛
C

(Axdx+ Aydy) =
¨
S

(
−∂Ax
∂y

+ ∂Ay
∂x

)
dxdy (A.220)
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いま，Ax → u，Ay → −v に置き換えると（S → R），
˛
C

(udx− vdy) = −
¨
R

(
∂u

∂y
+ ∂v

∂x

)
dxdy (A.221)

また，Ax → v，Ay → uに置き換えると，
˛
C

(vdx+ udy) =
¨
R

(
−∂v

∂y
+ ∂u

∂x

)
dxdy (A.222)

積分路 C を閉曲線にとり，上の結果を用いて関数 f(z)の複素積分を変形すると次のように
なる．˛

C

f(z)dz =
˛
C

(udx− vdy) + j

˛
C

(vdx+ udy)

= −
¨
R

(
∂u

∂y
+ ∂v

∂x

)
dxdy + j

¨
R

(
−∂v

∂y
+ ∂u

∂x

)
dxdy (A.223)

ここで，複素関数 f(z)が正則な場合，Cauchy-Riemann の条件

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
(A.224)

より，

∂u

∂y
+ ∂v

∂x
= 0, −∂v

∂y
+ ∂u

∂x
= 0 (A.225)

となり，被積分項がゼロであるから，関数 f(z)が正則のとき，次式が成り立つ．
˛
C

f(z)dz = 0 (A.226)

これは，Cauchyの定理（いわゆる大定理と呼ばれる定理）で，「f(z)が単連結な領域 Dで
正則ならば，D内に含まれる閉曲線 C 上にとった周回積分はゼロとなる」．

【例題 1】˛
C

f(z)dz の積分を，f(z) = 1
z
，積分路 C は複素平面の原点を中心とする単位円一周

（反時計周り）として求めよ．

略解　いま，z = rejt で表すと，

f(z) = 1/z = 1/(rejt) (A.227)

また，dz = jrejtdt．ただし，積分路 C 上では，単位円故 r = 1である．よって，
˛
C

dz

z
=
ˆ 2π

t=0

1
rejt

dz

dt

∣∣∣∣
r=1

dt =
ˆ 2π

0

jejt

ejt
dt = j

ˆ 2π

0
dt = j2π (A.228)
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f(z)が z = 0で発散するため，積分路 C 内部にこのような点を含めば積分はゼロにはなら
ない．

【例題 2】

f(z) = 1
z
（例題 1と同じ），積分路 C は原点を中心とする半径 Rの円一周（反時計周

り）にとり，
˛
C

f(z)dz を求めよ．

略解　
˛
C

dz

z
=
ˆ 2π

t=0

1
rejt

dz

dt

∣∣∣∣
r=R

dt =
ˆ 2π

0

jRejt

Rejt
dt = j

ˆ 2π

0
dt = j2π (A.229)

積分値は，積分路 C の円の半径 Rに依らないことを示す例である．

【例題 3】

積分路 C は例題 1と同じ単位円一周とし，f(z) = zm (m : 整数) として，
˛
C

f(z)dz

を求めよ．

略解　単位円上では，z = ejt とおけ，dz = jejtdt，

f(z)|r=1 = (ejt)m = ejmt (0 ≤ t ≤ 2π) (A.230)

こよれり，
˛
C

zmdz =
ˆ 2π

t=0
ejmt · jejtdt = j

ˆ 2π

0
ej(m+1)tdt (A.231)

場合分けして，まず，m = −1のとき，

j

ˆ 2π

0
ej(m+1)tdt = j

ˆ 2π

0
dt = j2π (A.232)

これは，例題 1そのもので，˛
C

z−1dz =
˛
C

dz

z
= j2π (A.233)

一方，m 6= −1のとき，

j

ˆ 2π

0
ej(m+1)tdt = j

[
ej(m+1)t

j(m+ 1)

]2π

0
= 0 (A.234)

結果をまとめると，˛
C

zmdz =
{
j2π (m = −1)
0 (m 6= −1) (A.235)

m 6= −1のときだけ値をもつ．
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A.8.2 Cauchyの積分表示式

さて，次の積分を考える．

I =
˛
C

f(z)
z − a

dz (A.236)

ただし，複素関数 f(z)は正則，積分路 C は z = aを囲む閉曲線（向きは正方向，左回り）
とする．まず，次のように変形する．

I = f(a)
˛
C

dz

z − a
+
˛
C

f(z) − f(a)
z − a

dz (A.237)

そして，第 1項の積分項について，積分路を次のように変形する．
˛
C

dz

z − a
=
(˛

C1

+
˛
C2

)
dz

z − a
(A.238)

ただし，C1 は z = aを中心とする半径 Rの円，C2 は単一連結な領域を囲む閉じた積分路
である．上式第 1項の計算を行うため，z = aを原点とする極座標系 (r, θ)を考え，半径 R

の円上では，

z − a = Rejθ (0 ≤ θ ≤ 2π) (A.239)

で表され，

dz = R · jejθdθ (A.240)

より，
˛
C1

dz

z − a
=
˛ 2π

0

R · jejθdθ
Rejθ

= j

˛ 2π

0
dθ = j2π (A.241)

一方，積分路 C2 には 1/(z − a) の特異点である z = a を含まないので，Cauchy の定理
より，

˛
C2

dz

z − a
= 0 (A.242)

したがって，
˛
C

dz

z − a
=
(˛

C1

+
˛
C2

)
dz

z − a
= j2π (A.243)

　次に，式 (A.237)の第 2項についても同じように 2つの積分路を考える．
˛
C

f(z) − f(a)
z − a

dz =
(˛

C1

+
˛
C2

)
f(z) − f(a)

z − a
dz (A.244)
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上式の被積分関数は z = a 以外で正則であり，積分路 C2 内部に z = a を含まないので，
Cauchy の定理より，上式の第 2 項はゼロである．上式の第 1 項については次のようにな
る．いま，

|f(z) − f(a)| < ε (A.245)

を満たす |z − a| = ρを考えると，∣∣∣∣∣f(z) − f(a)
z − a

∣∣∣∣∣ = |f(z) − f(a)|
ρ

<
ε

ρ
(A.246)

より，積分路 C1 を z = aを中心とする半径 ρの円として，∣∣∣∣∣
˛
C1

f(z) − f(a)
z − a

dz

∣∣∣∣∣ <
˛
C1

∣∣∣∣∣f(z) − f(a)
z − a

∣∣∣∣∣ |dz|
<

˛
C1

ε

ρ
|dz| = ε

ρ

˛
C1

|dz|

= ε

ρ
2πρ = 2πε (A.247)

そして，ε → 0の極限を考えれば，上の積分はゼロになる．よって，
˛
C

f(z) − f(a)
z − a

dz =
(˛

C1

+
˛
C2

)
f(z) − f(a)

z − a
dz = 0 (A.248)

したがって，

I =
˛
C

f(z)
z − a

dz = j2πf(a) (A.249)

正確には，「f(z)が領域 Dで正則ならば，内部の 1点 aにおける値は，この点を正の方向
に 1周し，D内にある閉曲線 C 上の周回積分：

f(a) = 1
2πj

˛
C

f(z)
z − a

dz (A.250)

で与えられる」．この公式を Cauchyの積分表示式という．
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