0 物理定数及び SI 単位

0.1 物理定数

 2.99792458×10^{8} ${\rm m}~{\rm s}^{-1}$ 真空中の光速度 c $C^2 J^{-1} m^{-1}$ $8.854187816 \times 10^{-12}$ 真空中の誘電率 ε_0 $1.60217733 \times 10^{-19}$ 電気素量 \mathbf{C} 6.6260755×10^{-34} Planck 定数 hJ sBoltzmann 定数 1.380658×10^{-23} $\mathrm{J}\;\mathrm{K}^{-1}$ k_B $9.1093897 \times 10^{-31}$ 電子の静止質量 m_e kg $1.6726231 \times 10^{-27}$ 陽子の静止質量 m_p kg 中性子の静止質量 $1.6749286 \times 10^{-27}$ m_n kg 原子質量単位 $1.6605402 \times 10^{-27}$ kg m_u mol^{-1} 6.0221367×10^{23} Avogadro 定数 N_A m^{-1} $R = m_e e^4 / 8\varepsilon_0^2 c^2 h^3$ $1.0973731534 \times 10^{7}$ Rydberg 定数 $a_B = \varepsilon_0 h^2 / \pi m_e e^2$ Bohr 半径 $5.29177249 \times 10^{-11}$ m

0.2 SI 基本単位の定義

メートル metre m 1/299792458 s の間に光が真空中を伝わる行程の長さ

キログラム kilogram kg 国際キログラム原器の質量

秒 second s セシウム 133 原子の基底状態の 2 つの超微細構造の間の

遷移に対応する放射の 9192631770 周期の継続時間

ケルビン kelvin K 水の 3 重点の熱力学温度の 1/273.16

モル mole mol 0.012 kg の炭素 12 の中に存在する原子の数と等しい数の

要素粒子を含む系の物質量

アンペア ampere A

0.3 接頭語

 10^{15} P ペタ 10^{-15} peta femto f フェムト 10^{12} 10^{-12} ピコ teraT テラ pico 10^{9} giga G ギガ 10^{-9} nano ナノ 10^{6} M メガ 10^{-6} mega micro μ マイクロ 10^{3} 10^{-3} キロ milli m ミリ kilo k 10^{2} hecto h ヘクト 10^{-2} centi c センチ 10^{1} decada デカ 10^{-1} desi d デシ

0.4 エネルギーの単位

ジュール joule J SI 単位系のエネルギー単位 $1 \text{ J} = 1 \text{ kg m}^2 \text{ s}^{-2}$

電子ボルト electronvolt eV 1 V の電場中にある電子のポテンシャルエネルギー 1 eV = e J

カイザー keiser cm^{-1} $1~\mathrm{cm}^{-1}$ の光子 $1~\mathrm{dm}$ $1~\mathrm{cm}^{-1} = ch~\mathrm{J}$

カロリー calorie cal 1 cal = 4.184 J

- \bullet cm⁻¹ は昔は K と書いたが , 現在この記号は使用してはならない。
- cal はなるべく使用しない方が望ましいが,使用する場合には定義を示す。
- eV は SI 単位ではないが, 当面定義を示さずに使用することが出来る。

0.5 その他の物理量の単位

カ N ニュートン $m kg s^{-2}$

圧力 Pa パスカル $N m^{-2} = m^{-1} kg s^{-2}$

仕事 J ジュール $N m = m^2 kg s^{-2}$

電荷 C クーロン As

電位 V ボルト $J C^{-1} = m^2 \text{ kg s}^{-3} A^{-1}$

演習問題

0-1. 次の物理量に対する SI 基本単位は何か。名称と記号を記せ。

(1) 長さ (2) 質量 (3) 時間 (4) 熱力学温度 (5) 物質量 (6) 電流

0-2. 次の物理量に対する SI 単位は何か。名称と記号と定義とを記せ。

(1) 力 (2) 圧力 (3) エネルギー (4) 仕事 (5) 振動数 (6) 電荷

0-3. 次の非 SI 単位はどの物理量の単位か。また,名称と SI 単位への換算法をのべよ。

(1) cm (2) erg (3) dyn (4) min (5) Torr (6) mmHg

0-4. 次の単位は使用してはならない。 SI 単位ではどう書くべきか。

(1) cc (2) K (波数の単位カイザー) (3) μ (4) sec (5) hr

0-5. 次の単位は SI 単位ではないが,当面定義を示さずに使用できる。定義するとすればどうなるか。また 名称は何か。

(1) min (2) ℓ (3) eV (4) Å (5) bar (6) atm

0-6. 次の4つの単位はエネルギーの単位として使用される。また換算表を作れ。

(1) J (2) eV (3) cm^{-1} (4) cal

0-7. 次の物理定数のうちで、その値が厳密に定義された量はどれか。また測定によって決定された量はどれか。

(1) 真空中の光速 c (2) 電気素量 e (3) Planck 定数 h (4) Boltzmann 定数 k_B

0-8. 物理定数の値と定義式とから,Rydberg 定数の値を cm^{-1} 単位で計算せよ。

0-9. 物理定数の値と定義式とから, Bohr 半径の値を Å 単位で計算せよ。