

- Fuel-cell electric vehicle
- Cogeneration system for home use
- Power source for compact sized mobile device

Advantage : Compact High power
Start up from ambient temp.

Problem

(1) Lower efficiency for heat waste ($\sim 60 \mathrm{C}$)
\rightarrow Improvement of energy conversion efficiency by intermediate-temperature operation
(2) Low durability
\rightarrow Clarification of degradation factor Improvement of durability
(3) High cost for cell stacks

Objective

1. Development of intermediate temperature fuel cells at $300 \sim 600^{\circ} \mathrm{C}$

- Polyphosphate-based high proton conductive electrolytes
- Anode cermets using proton - oxide ion mixed conductors

2. Improvement of PEFC durability (2006 ~)

- Investigation of oxygen reduction reaction mechanism and hydrogen peroxide formation on platinum catalyst
high-efficiency intermediate temperature solid oxide fuel cells (1)

Preparation of high proton conductive solid electrolyte at $300^{\circ} \mathrm{C}$

Ammonium alkaline-metal polyphosphate solid solutions

$\left(\mathrm{NH}_{4}\right)_{0.20} \mathrm{~K}_{0.80} \mathrm{PO}_{3}(x=0.20)$

A part of $\mathrm{NH}_{4}{ }^{+}$is substituted by M^{+}.

Heat-treated in air

High proton conductivity and thermal stability

Anode cermets using proton - oxide ion mixed conductors

$\mathrm{BaCe}_{0.9} \mathrm{Sm}_{0.1} \mathrm{O}_{3-\alpha}$ (BCS10)

: Triple phase boundary (TPB) \bigcirc : Activation site

Enlargement of reaction sites by proton conductivity in the anode cermet
\rightarrow High performance at low temperatures

Ni / BCS10 | LSGM | Pt

Changes in the interfacial conductivity at anode/electrolyte interface \rightarrow Effects of proton conductivity

