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Abstract
This paper reports on the phenomenon that may be

called “derivative meaning,” where the basic semantic con-
ventions for certain graphical representation systems give
rise to additional informational relations between features
of representations and features of the represented. We will
discuss several examples of graphical systems, such as the
systems of scatter plots, data maps, and tabular represen-
tations, whose informational potentials heavily depend on
this phenomenon. We will then give an analysis of the way
a new meaning relation is derived from basic semantic con-
ventions, and specify the exact conditions for a representa-
tion system to support this phenomenon.

1. Introduction

The two charts in Figure 1 are the results of presenting
the two sets of data in Table 1 in the form of scatter plots.
The example is borrowed from Tufte [12] with slight mod-
ifications.
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Table 1. Two Sets of Data

On the one hand, each of these scatter plots is “inter-
translatable” with the table of the corresponding number:

one provides sufficient information to reproduce the other,
and vice versa. In this limited sense, each plot has the same
informational content as the corresponding table.
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Figure 1. Scatter Plots for Table 1

On the other hand, there is a definite sense in which each
plot reveals more information than the table does. The par-
ticular shape formed by the dots on a scatter plot seems
to indicate some general fact about the data, or more pre-
cisely, about the situation that the data are about. Thus, the
particular shape appearing in plot I indicates that Y-values
and X-values are positively correlated, and the shape in plot
II indicates that Y-values and X-values are mostly propor-
tional.

In fact, it is due to this additional informational relation
that we sometimes prefer scatter plots to simple tabular dis-
plays. Kosslyn [5] makes clear this function of scatter plots:

Scatter plots...employ point symbols (such as
dots, small triangles, or squares) as content ele-
ments. The height of each point symbol indicates
an amount. These displays typically include so
many points that they form a cloud; information
is conveyed by the shape and the density of the
cloud. (p. 46.)

It is clear, and almost trivial, that the particular shape and



the density of the cloud formed in some scatter plot carries
information that the corresponding table of data would not.
In fact, this type of additional informational relations are
quite prevalent in graphical representation systems, and as
the above example illustrates, their existence is often the
very reason why a given system is more effective than oth-
ers as a method of displaying certain set of information.
Nevertheless, when it comes to the question how such an
additional informational relation arises in a given represen-
tation system, things are much less clear. The aim of this
paper is to give an detailed answer to this general question.

In the next section, we will argue that the informational
relation in question can not be simply explained as a part
of the basic semantic conventions associated with this sys-
tem of scatter plots. It is more appropriate to consider the
relation as something that naturally holds, given the ba-
sic semantic conventions. Drawing on this argument, we
will introduce the general notion of “derivative meaning”
supported by a graphical system. In section 3, we will
show that the phenomenon is in fact general, discussing
several instances of graphical systems that support deriva-
tive meaning. They include the systems of line graphs,
star graphs, data maps, node-edge graphs, and even tabu-
lar representations. In section 4, we will turn to the task of
formally analyzing the phenomenon. After demonstrating
how derivative meaning is in fact derivable from the ba-
sic semantic conventions, we will spell out the conditions
for a representation system to support derivative meaning.
Such a specification is important, partly because it shows
that derivative meaning is not an arbitrary matter, whose
justification totally depends on the person who interprets a
representation. Finally, section 5 briefly discusses the re-
lationship of this work to some other works in formal se-
mantics of graphical representations, especially, those in
the model-theoretic framework and in the channel-theoretic
framework.

2. Phenomenon of Derivative Meaning

Generally, the meaning of a graphical representation is
determined on the basis of the set of semantic conventions
associated with it. We can express these conventions in the
form of implication, which is supposed to hold if a repre-
sentation is accurate. For example, the semantic conven-
tions for a system of Venn diagrams could be expressed in
the following way:

• If a variable appears in the intersection of two circles,
then the sets denoted by them have a non-empty inter-
section,

• If the intersection of two circles is shaded, then the
sets denoted by them are disjoint.

These semantic relations are “conventional” in the sense
that the initial decisions that established them are essen-
tially arbitrary. For example, shading in a Venn diagram
means emptiness in a different way than smoke in sky
means fire below. The latter informational relation is based
on more or less reliable natural law, while the former is
rooted in John Venn’s initial decision on what feature of his
diagrams to mean what features of the depicted object.

Now the informational relation that we saw between the
particular shapes and densities of dots on scatter plots and
the general facts indicated by them do not seem to be purely
conventional in this sense. In our view, the most fundamen-
tal semantic convention associated with scatter plots is the
following:

(1) If a dot appears at the Y-coordinate m and the X-
coordinate n, then there is an instance in the data with
the X- value and the Y-value represented by n and m
respectively.

In fact, this rule scheme is all that we must consult in
order to draw scatter plots from the data in Table 1. Fur-
thermore, this rule is purely a matter of convention, rooted
in the initial decision that the inventor of scatter plots made
a long time ago. In contrast, the informational relation that
we identified earlier seems to be in different status. Take,
for example, the following informational relation underly-
ing the interpretation of plot I that we gave earlier.

(2) If dots form a left-slanted pattern, the X-values and
the Y-values of the instances in the data are positively
correlated.

It is not necessary for the establishment of this relation-
ship that somebody has explicitly declared it as a semantic
convention associated with scatter plots. The relationship
(2) is something that naturally holds once the basic seman-
tic convention such as (1) has been adopted. It is partly
derivative, and is not a part of the primitive semantic con-
ventions associated with scatter plots.

The intuition that the informational relations such as (2)
are not a part of the primitive semantic conventions is fur-
ther confirmed by the fact that they are discoverable. It of-
ten happens that one who knows the basic semantic rules of
scatter plots discovers a new way of reading them, realizing
that a particular informational relation between a pattern of
dots and a general fact about the presented data. Thus we
often talk about “experts” of reading scatter plots, to refer to



those who are familiar with these additional informational
relations supported by scatter plots. Now, it would be quite
counter-intuitive to say that each of these newly discovered
informational relations is a part of the primitive semantic
conventions for scatter plots. For if that were the case, scat-
ter plots would come with a quite complex set of semantic
conventions, and nobody but a few experts could claim that
he or she is familiar with the semantics of scatter plots.

3. Examples

The main concern of this paper is this type of deriva-
tive informational relation supported by a representation
system, namely, the informational relation that is somehow
derivable from, yet not a part of, the primitive semantic con-
ventions of the system. Once we pay attention to this phe-
nomenon, we easily find it quite common in various graph-
ical modes of representation. Let us explore some of those
examples, to get a sure grip of the phenomenon that we are
trying to explain.

3.1. Line Graph

Just as dots in a scatter plot form a particular cloud that
carries information, data points in a line graph forms a in-
formative slope or curve when connected by lines. For ex-
ample, Kosslyn [5] explains the utility of the line graph in
Figure 2 in the following way:

Here it is apparent that all groups but one show
lower levels of “parafabuloid” with increased
age—women in the lower income group have the
reverse trend. Spotting this trend the table is diffi-
cult, but seeing in this graph is easy: Differences
in the orientations of the lines convey the differ-
ent trends, and the eye and mind quickly register
such differences. (p. 10.)

Kosslyn is appealing to the following informational re-
lation supported by this particular system of line graphs:

(3) If there is a single leftward slope among rightward
slopes, all groups but one has lower levels of parafab-
uloid with increased age.

It is due to this informational relation that the line graph lets
us “spot” the relevant trend of parafabuloid levels.

Yet (3) is an informational relation that we would call
“derivative.” The primitive semantic conventions for line
graphs are what can be summarized in the following way.
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Figure 2. A Line Graph

(4) If a line passes the Y-coordinate m at the X-coordinate
n, then the parameter represented by the line has the
Y-value represented by m at the X-value represented
by n.

The informational relation (3) is not a part of the prim-
itive semantic conventions summarized in (4). Rather, it is
a relation that naturally holds once the latter conventional
relation is established.

Yet this type of derivative informational relations signif-
icantly contribute to the overall informational utility of line
graphs. In Kosslyn’s words, “Patterns of lines can signal
specific information for readers who have had experience
with similar line graphs (and so have appropriate knowl-
edge)” (p. 34, [5]).

3.2. Star Graph

Perhaps, the so-called “star graphs” were invented to fur-
ther enhance precisely this ability of line graphs. Unlike the
cases of line graphs, however, it is the size and the shape of
a polygon, rather than the paths of individual line segments,
that convey information.

Look at the charts in Figure 3, borrowed from [4] with
modifications. They display the overall performance of the
highschool students in the regions A and B, measured by
adjusted SAT score, unadjusted SAT score, and graduation
rate. Here, information other than the individual values of
these measures can be obtained from an inspection of the
triangles appearing on the charts. Specifically, the obtuse
angle of the triangle in the right graph indicates that B’s
school system has remarkable weakness in its graduation
rate; the balanced but small triangle in the left graph indi-
cates that the overall performance of A’s school system is
low, with no specific area of strength or weakness.
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Unadjusted SAT
836 (-1.998)
1084 (2.198)

Adjusted SAT
51.2 (1.982)
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58.0 (-1.961)
90.9 (2.104)

B

Figure 3. Star Graphs

Yet these informational relations do not seem to be a
part of the basic semantic conventions for the star graphs.
The basis semantic conventions specify the scales of each
axis on a star plot, and thus determine what value is indi-
cated by the locations of the polygon’s vertex on each axis.
The informational relations cited above are something that
is derivable once these basic semantic relations are estab-
lished.

3.3. Data Map

The phenomenon of derivative meaning is not confined
to the display of numerical data in statistical charts. It is
also relevant when we display spatial information in the
form of a data map. For example, Tufte [12] cites John
Snow, who used a street map of central London to plot the
locations of deaths from cholera in September 1854. On his
map in Figure 4, individual dots indicate the locations of
deaths, and crosses indicate the area’s eleven water pumps.

As with the case of scatter plots, the dots on the map
form a cloud with a specific pattern and density, and it
clearly indicates a general pattern of spatial distribution of
cholera deaths. Specifically, the fact that many dots appear
around the cross on the band denoting the Broad Street con-
veys the information that many deaths occurred around the
water pump at the Broad Street.

Nevertheless, the informational relation between these
two facts is a derivative one. The primitive semantic con-
ventions consist of the usual semantic rules for the map,
along with the specifications of the meanings of dots and
crosses at particular locations on the map. Given these con-
ventions, the particular pattern of the dots on the map natu-
rally indicates a concentration of cholera deaths around the
water pump at the Broad Street.

This derived informational relation played a historical
role too: Snow used the information provided by it to find

Figure 4. A Data Map

out that the pump at the Broad Street was contaminated.
He then had the handle of the pump removed and ended
the neighborhood epidemic which had taken more than 500
lives. Tufte [12] says:

Of course the link between the pump and the dis-
ease might have been revealed by computation
and analysis without graphics, with some good
luck and hard work. But, here at least, graphi-
cal analysis testifies about the data far more effi-
ciently than calculation. (p. 24.)

3.4. Node-Edge Graph

A node-and-edge graph also supports derivative mean-
ings. Think of a route map of the underground system in
London, or of the subway system in any reasonably large
city. Although such a route map typically gives a hint about
the geographical locations of the displayed stations, it is
essentially a node-edge graph. Thus, the basic semantic
convention is that if an edge of a particular pattern or color
connects two nodes, it means that the subway line denoted
by that pattern or color connects the stations denoted by
the nodes. For example, my route map of the London un-
derground system has a dotted edge connecting the “Baker”
node and the “Wall” node, and this means that the Pica Line
connects the Baker Station and the Wall Station.

Given this semantic convention, it naturally holds that if
two nodes are connected by a path consisting of edges with



a single pattern or color, it means that there is a subway line
connecting the stations denoted by the nodes. For example,
my map of London’s underground contains a path, consist-
ing of three yellow edges, from the “Victoria” node to the
“Embankment” node, and it means that the Victoria station
is connected to the Embankment station by the Circle line.
Note that this informational relation is not the same as the
basic semantic conventions specified above: one refers to a
path connecting two station nodes, while the other refers to
an edge connecting two station nodes. The former is deriv-
able from, but not the same as, the latter.

There seem to be several other informational relations
derivable from the basic semantic convention for node-edge
graphs, which seems to greatly contribute to the utility of
this type of displays. For one thing, if a node in my route
map has many edges touching it, it normally means that
many different subway lines serve the station denoted by
the node, connecting it to many different stations. Thus,
the display of this type lets one easily detect the hubs of the
city’s subway system.

3.5. Table

Earlier, tables were contrasted to scatter plots and line
graphs, as though tables never support the derivative infor-
mational relation that we have been discussing. This sug-
gestion is wrong: some tables support a simple, but clear
case of derivative meaning. Consider Table 2, which dis-
plays the functions of several models of low-cost printers.

PM750

1440x720≤15W

PM750

PM700

≥1.8Mbps USB

MD5000

A3

PM2000

BJC430

sublim

Table 2. A Table

Here the basic semantic convention is that if a circle ap-
pears in the column representing the function X at the the
row representing the printer model Y, it means that Y has
the function X, while the appearance of a cross at the same
position indicates the opposite. Given this basic rule, it nat-
urally follows that the appearance of circles in most posi-
tions in the row labeled “PM750” means that the model
PM750 has most of the functions listed in the table. It

also follows that the appearance of many crosses in the col-
umn labeled “sublim” means that sublimination printing is
a function rarely featured by the listed printers. There are
probably many other informational relations derivable, but
the point is that even a simple table such as Table 2 sup-
ports the phenomenon of derivative meaning, and that this
fact greatly contributes the table’s efficacy as a display of
data.

4. Analysis

We have seen several examples of representation sys-
tems that support what may be called “derivative meaning,”
and found that its existence greatly explains the utility of
those systems. We will now investigate how exactly this ad-
ditional information relation arises in a given system. We
take the simplest example, namely, the system of tabular
representations just cited.

4.1. How Derivative Meaning Arises

For convenience, let us call this particular system Rt.
We write “©(n, m)” to refer to the state of affairs that
a circle appears in the n-th column at the m-th row, and
“×(n, m)” to refer to the appearance of a cross in that po-
sition. We also write “F (n, m)” to refer to the state of af-
fairs that the printer model represented by the m-th row
has the function represented by the n-th column, and write
“L(n, m)” to refer to the opposite state of affairs. Thus,
©(n, m) and ×(n, m) are states of affairs that possibly
hold in a table, while F (n, m) and L(n, m) are states of
affairs that possibly hold in the printer-technology situation
represented by a table.

With these notations, we can describe the basic semantic
conventions for the system Rt in the following way:

(5) If ©(n, m), then F (n, m).

(6) If ×(n, m), then L(n, m).

For brevity, we write “©(n, m) ⇒ F (n, m)” to mean (5),
and “×(n, m) ⇒ L(n, m)” to mean (6).

We had the intuition that the informational relation from
(7) to (8) below is somehow derivable from these basic se-
mantic conventions:

(7) Circles appear in most of the positions in the fourth
row.

(8) PM750 has most of the functions listed in the table.



Let us assume that here the quantifier “most” is used
with a definite sense, to mean “more than half.”

Now (8) is an abstract state of affairs, in the sense that
there are several alternative ways in which it is true. For
example, one way in which (8) is true is that PM750 has five
of the listed functions, namely, the first through the fifth. In
our notation, we can conceive this “way” as the following
collection of individual states of affairs:

{F (1, 4), F (2, 4), F (3, 4), F (4, 4), F (5, 4), L(6, 4)}

Here is another way in which (8) is true:

{L(1, 4), F (2, 4), F (3, 4), F (4, 4), F (5, 4), L(6, 4)}

Keep on this enumeration, and you eventually obtain the
set of collections of this kind that exhausts all the alterna-
tive ways in which the state of affairs (8) holds. (Such a
set exists since the quantifier “most” in (8) has a definite
meaning.) Let ∆ be this set. Then, if there is a member
of ∆ whose members are all true, this means that one of
the sufficient conditions for (8) is satisfied, and hence (8)
is true. Using

∧
and

∨
to denote the operations of con-

junction and disjunction on sets of states of affairs, we can
express this fact in the following way:

(9) If
∨
{
∧

δ : δ ∈ ∆}, then (8) is true.

Note that a member of ∆ is a collection of states of af-
fairs about the printer market situation. We will now define
the “corresponding” set Γ whose members are collections
of states of affairs about the table itself.

Let γ be a set of states of affairs about the table, and δ
be a set of states of affairs about the printer market. We say
that γ is projected to δ if for each member γi of γ, there is
a member δi of δ such that γi ⇒ δi, and for each member
δi of δ, there is a member γi of γ such that γi ⇒ δi. For
example, the following set is projected to the first of the two
sets displayed above:

{©(1, 4),©(2, 4),©(3, 4),©(4, 4),©(5, 4),×(6, 4)}

We define Γ as the set of all collections γ such that γ is
projected to some collection in ∆. Thus, each member of Γ
has some member of ∆ it is projected to, and each member
of ∆ has a member of Γ projected to it.

Given the implications (5) and (6), it logically follows
that if there exists a member of Γ whose members are all
true, then there exists a member of ∆ whose members are
all true. In other words, the following is true:

(10) If
∨
{
∧

γ : γ ∈ Γ}, then
∨
{
∧

δ : δ ∈ ∆}.

To see this, assume the antecedent, and suppose that
there is a member γ of Γ such that

∧
γ is true. By the

definition of Γ, γ is projected to some collection δ in ∆.
Let δi be an arbitrary member of δ. By the definition of
projection, γi ⇒ δi for some member γi of γ. But γi is
true, since

∧
γ is true. Since γi ⇒ δi and (5) and (6) are

assumed, δi is true. Since each member of δ is shown to be
true in this way,

∧
δ is true. Thus,

∨
{
∧

δ : δ ∈ ∆} is true.
Now, it should be clear from the definition that Γ is the

set of all the alternative ways in which more than three cir-
cles appear in the fourth row. Thus, Γ exhausts all the ways
in which (7) is true. In other words, if (7) is true, there is
some member of Γ whose members are all true. We can
express this fact in the following way:

(11) If (7) is true, then
∨
{
∧

γ : γ ∈ Γ}.

Combining (9), (10), and (11), we see that the informa-
tional relation from (7) to (8) obtains in fact. It is thus deriv-
able, given the basic semantic conventions (5) and (6).

4.2. Conditions for Derivative Meaning

Exactly what feature of this system Rt of tabular repre-
sentations makes this derivation possible? More generally,
what conditions should a representation system satisfy to
support such a derivation?

This answer becomes explicit when we consider the two
ways in which one could extract information (8) from Table
2. The more tedious way is to inspect individual circles ap-
pearing in the fourth row in the table, observing the individ-
ual facts ©(1, 4), ©(2, 4), ©(3, 4), ©(4, 4), ©(5, 4), and
×(6, 4). According to the semantic conventions (5) and (6),
these facts respectively indicate the facts F (1, 4), F (1, 4),
F (2, 4), F (3, 4), F (4, 4), F (5, 4), and L(6, 4). These facts
conjunctively imply the fact that PM750 has most functions
listed in the table, and hence one could eventually extract
the information (8).

Now, as we have seen, the system Rt provides an al-
ternative way to extract this information. Surely the facts
F (1, 4), F (2, 4), F (3, 4), F (4, 4), F (5, 4), and L(6, 4)
conjunctively imply the information (8). But as we have
seen, there is a much weaker state of affairs that implies (8),
namely,

∨
{
∧

δ : δ ∈ ∆}. Now, given the basic semantic
conventions for Rt,

∨
{
∧

δ : δ ∈ ∆} is in turn implied by
the state of affairs

∨
{
∧

γ : γ ∈ Γ}. What is special about
the representation system Rt is the fact that it provides a
state of affairs that entails

∨
{
∧

γ : γ ∈ Γ}. The state of
affairs is (7), and it is due to its existence at the beginning
of this chain of entailments that the system Rt can provide
an alternative indicator to the desired information (8).



(7) �
∨
{
∧

γ : γ ∈ Γ}

�

∨
{
∧

δ : δ ∈ ∆} � (8)

Figure 5. A Chain of Entailments Supporting
Derivative Meaning

Figure 5 gives a schematic review of this chain, where
	 (or

	

) means an entailment. The bottom entailment
from

∨
{
∧

δ : δ ∈ ∆} to (8) is a constraint determined
in the domain of represented objects, namely, the domain
of printer market situations. The central entailment from∨
{
∧

γ : γ ∈ Γ} to
∨
{
∧

δ : δ ∈ ∆} is a logical conse-
quence of the basic semantic conventions (5) and (6). The
top entailment from (7) to

∨
{
∧

γ : γ ∈ Γ} is a constraint
determined in the domain of representing objects, namely,
the domain of tables on two-dimensional surfaces.

Our main claim is that whether a representation system
supports a derivative meaning relation depends on the ex-
istence of a chain of entailment of this type. To be more
exact, we characterize the conditions for derivative mean-
ing in the following way:

Definition. Let R be a representation system. We say that
a state of affairs α indicates a state of affairs β derivatively
in R if there are sets Γ and ∆ of collections of states of
affairs such that:

1. α 	
∨
{
∧

γ : γ ∈ Γ},

2. Each member of Γ is projected to some member of ∆,
and each member of ∆ has some member of Γ pro-
jected to it,

3.
∨
{
∧

δ : δ ∈ ∆} 	 β.

Given the basic semantic conventions for a system R,
it is easy to see that if Γ and ∆ satisfy clause 2, then∨
{
∧

γ : γ ∈ Γ} 	
∨
{
∧

δ : δ ∈ ∆}. Thus, under this
condition, α in fact entails β, that is, the indication from
α to β is an accurate one. Note that there is no guarantee
for this entailment if the basic semantic conventions do not
hold. This shows that the informational relation from α to
β indeed depends on the basic semantic conventions.

4.3. Illustrating the Conditions

As the example of tabular representations illustrates, α
in the above definition is often a global property of rep-
resentations (such as dominant appearances of circles in a

row) while members of Γ consist of more local properties
(such as the exact position of an individual circle). Thus,
clause 1 generally demands the existence of an entailment
relation from a global property to local properties. In con-
trast, clause 3 generally demands an entailment of the oppo-
site direction, from local properties (such as the possession
of a specific function by a printer model) to a more global
property (such as the possession of a majority of functions
by a printer model).

Generally, our definition demands the existence of two
kinds of constraints, namely, a source constraint on the
structural properties of representations, which often goes
from a global property to more local properties, and the tar-
get constraint on the represented objects, which often goes
from local properties to a more global property.

Thus, in the examples in section 3, the source constraint
takes the form of entailment (1) from a left slanted pattern
of dots on a scatter plot to the positions of individual dots,
(2) from a single exceptional leftward slope on a line graph
to the exact positions of the end points of all slopes, (3)
from the overall shape of a polygon on a star graph to the
exact positions of the polygon’s vertices, (4) from a cloud
formed by dots on a data map to the positions of individ-
ual dots, and (5) from the path-level connections of station
icons to their edge-level connections on a route map.

In contrast, the target constraint takes a form of entail-
ment (1) from the X- and Y-values of individual data points
to an overall correlation of X- and Y-values, (2) from the
specific parafabuloid levels of various groups of people to
the existence of an exceptional group, (3) from the gradua-
tion rates and the SAT scores of a group of students to the
overall strength and weakness of the group, (4) from the
locations of individual cholera deaths to their overall distri-
butional tendency, and (5) from the immediate connections
of London underground stations to their connections in the
general sense.

Now our analysis claims that derivative meaning is gen-
erated when there is an additional constraint, directly en-
sured by semantic conventions, from the conseqeunt of a
source constraint to the antecedent of the corresponding tar-
get constraint. Although we have no space to show that all
these constraints hold in the individual cases, the above il-
lustrations should make reasonably clear how our analysis
applies to particular instances of derivative meaning.

5. Related Works

As partly documented in sections 1 and 3, the phe-
nomenon of derivative meaning reported in this paper is



often pointed out, and is even taken for granted, in the
methodological studies on graphical data display such as
[12, 5, 4]. Some of these works also report psycholog-
ical studies on the ease in which humans perceives the
graphical features carrying derivative meaning, as well as
their effect on human performance in problem-solving. The
topic, however, has not received sufficient treatment from
the standpoints of formal semantics of graphical represen-
tations, and the exact mechanisms in which such derivative
informational relations arise have been largely untouched.

Barwise and Etchemendy [1] initiated a series of works
on model-theoretic semantics of graphical representations
[10, 3, 6]. The framework has made possible rigorous in-
vestigations into the truth-conditions of graphical represen-
tations, and hence into the meta-logical properties, such as
soundness and completeness, of deductive systems defined
on graphical representation systems. As it stands, however,
the framework lacks a mathematical device to express an
entailment on the structural properties of graphical repre-
sentations per se, as opposed to that on the properties of the
represented objects. We have seen that an entailment of the
first kind, namely, α 	

∨
{
∧

γ : γ ∈ Γ} in our definition, is
a critical condition for a system to support derivative mean-
ing. Thus, our analysis implies that a significant extension
of the mode-theoretic framework would be required, if it is
to model the way in which a derivative semantic relation
arises out of the basic semantic conventions.

The channel-theoretic framework used in [7] and further
refined in [2] (chapter 20) does clearly distinguish these two
kinds of entailments. In fact, the present author [7, 8] ex-
ploits this feature of the framework and characterizes sev-
eral phenomena, such as free ride, overspecificity, autocon-
sistency, and constraint preservation, which have been ar-
gued to be specific to graphical systems of representations
[9]. The framework appears to provide a appropriate setting
for further formalizing the analysis developed in this paper.

Swoboda and Barwise [11] recently used the channel-
theoretic framework to contrast information directly ob-
servable from graphics to information derivable only indi-
rectly. Although the topic is clearly related to the one dis-
cussed in this paper, Swoboda and Barwise appealed to a
different potential of channel theory than the one just cited.
A comparison of our model to theirs is therefore an inter-
esting project, but it is yet to be undertaken.

6. Conclusion

In conclusion, what is derivative meaning in graphical
representations? What makes a feature α of a representa-

tion derivatively indicate a feature β of the represented in
a given system? Briefly, the answer is the existence of a
chain between α and β, consisting of three links of differ-
ent kinds. The first link is an entailment determined in the
domain of the representing objects. The middle link is an
entailment ensured by the basic semantic conventions for
the system. And the third link is an entailment determined
in the domain of the represented objects. Thus, intuitively,
a derivative meaning relation is the result of extending the
basic semantic relation (the middle link) with a constraint
on the representing objects (the first link) and a constraint
on the represented objects (the third link). Some systems
support such an extension, and some don’t. Those that do
support generally enjoy the enrichment of the semantic con-
tents of the individual representations that belong to them.
The scatter plots, the line graph, the data map, the node-
edge graph, and the table encountered in this paper are all
instances of such enriched representations.
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