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Suppose Mr. and Mrs. Murata have a small living room with a large sectional,
two side tables, a center table, and a large TV cabinet. Mrs. Murata wants to
rearrange the furniture to create a large pathway across the living room to the
kitchen. Mr. Murata is rather reluctant about rearrangement, fearing that it
may result in a less convenient setting of the TV cabinet and the sectional.
Thus, Mrs. Murata needs to show that it is possible to create a desired pathway
without sacrificing a good viewing angle of the TV from the sectional. For
this purpose, she draws a diagram depicting their living room after a would-be
rearrangement (Figure 1). “Look,” she says. “It’s possible. Let’s do it.”
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Figure 1: Room Map Drawn by Mrs. Murata

The type of “proof” that she has just conducted is the main subject of
this paper. She has shown the possibility, or consistency, of an arrangement of
furniture that satisfies specific requirements. Interestingly, she has done so by
constructing a graphical expression of the arrangement in question. For some
reason, the constructibility of such an expression is taken to guarantee the con-
sistency of the represented conditions. Let us call this type of proof graphical
consistency proof.

Although this procedure is quite natural and ubiquitous, its validity should
not be taken for granted. A diagram is, after all, just a representation of some-
thing, not the thing itself. How can a construction of a representation be a proof
of the consistency of what is expressed? Let Γ be the set of specifications of the



desired furniture arrangement, concerning the desired viewing angle of the TV
display from the sectional, the desired width and route of the pathway, and the
horizontal dimensions of Mr. and Mrs. Murata’s living room and furniture, the
desired viewing angle of the TV display from the sectional. Let s be Mrs. Mu-
rata’s map, which expresses Γ. The question is how the construction of s can
be a proof of the consistency of Γ.

Note that not every representation that expresses Γ is taken to be a proof
of Γ’s consistency. Suppose you specify all the requirements in the form of
a list of English sentences. This would be a representation expressing all the
requirements Γ, just as the room map s is. Yet, nobody would count it as a
proof of the consistency of Γ. So, there must be something in representations
such as s that is missing from lists of sentences. What is it?

A quick answer to this question is “an auto-consistency property of a rep-
resentation system.” Roughly, an auto-consistency property of a representation
system is its incapability of expressing a certain range of inconsistent conditions.
For example, the system of room maps of the kind Mrs. Murata has produced
cannot express spatially impossible arrangements of furniture, and in this re-
spect, the system is auto-consistent. This means that if some arrangement of
furniture can be expressed in a room map, it guarantees that the expressed ar-
rangement is spatially possible. The system of English sentences, on the other
hand, is not auto-consistent in this respect, and for this reason, expressibility
of a furniture arrangement in English does not guarantee the spatial possibility
of the arrangement. Auto-consistency, defined as the incapability of expressing
a certain range of inconsistent conditions, is clearly responsible for a system’s
capacity of graphical consistency proofs.

Researchers in philosophy, logic, AI, and cognitive psychology have paid
some attention to auto-consistency properties of representation systems. Al-
though the formal notion of auto-consistency was not introduced until later, Gel-
ernter’s Geometry Machine (1959) exploited the auto-consistency of geometry
diagrams to short-cut the search for provable theorems. Sloman (1971) explic-
itly suggested non-expressibility of inconsistent information as a characteristic
of “analogical” representations. Lindsay (1988) proposed a general framework
of knowledge representation that exploits the auto-consistency property. Bar-
wise and Etchemendy (1994) formally introduced the notion of auto-consistency
and showed how their system of Hyperproof diagrams exploits this property to
enable graphical consistency proofs. They also proved that a sub-system of Hy-
perproof diagrams is in fact auto-consistent (1995). Stenning and Inder (1995)
discussed the trade-off of the expressive power of a representation system and
its auto-consistency property.

Despite these exceptions, studies of the phenomenon of auto-consistency
have been rather scattered and cursory so far. In particular, the questions
still remains on the semantic mechanism behind an auto-consistency property
of a representation system. Exactly what makes a representation system auto-
consistent? What prevents a member of a representation system from expressing
a certain range of inconsistencies? Is there any common semantic property
shared by various systems that allow graphical consistency proofs?

2



This paper has two main goals. The first goal is to develop a semantic anal-
ysis adequate to answer the questions just posed. We will start with examining
more examples of auto-consistent representation systems and their potentials
for graphical consistency proofs (section 1). We will then propose our model of
auto-consistency properties of representation systems in a simplified semantic
framework of channel theory (Barwise and Seligman, 1997), and characterize,
in its terms, the conditions for a graphical consistency proof to be valid in a
representation system (section 2). As it turns out, a special types of matching
of constraints in the source and the target of the system is responsible for auto-
consistency. This indicates an important connection of the phenomenon of “free
ride” discussed in the literature of diagrammatic reasoning and the phenomenon
of graphical consistency proof, and our analysis motivates the general concept
of physical on-site inference that covers both types of inferences.

The second goal of this paper is then to formulate this concept as clearly as
possible. After giving an analysis of the exact procedures and requirements for
free rides, we will highlight three characters shared by free rides and graphical
consistency proofs: both procedures utilize perceptually accessible objects, such
as graphics on a sheet of paper, as inferential surrogates by applying physical
operations on them (section 3). Thus, seen in connection with the on-going
research on model-based reasoning, this paper defines one exact sense in which
perceptual objects are used as models for inference in manipulative processes
(Magnani, 2001). In connection with the framework of distributed cognition,
this paper is a case study of an important class of inferences that use visual
representations as parts of distributed cognitive systems (Giere, 2001).

1 Examples

To get a surer grasp of our target, let us examine various examples of repre-
sentation systems with auto-consistency properties and the kinds of graphical
consistency proofs allowed in the systems.

Example 1 Mrs. Murata’s room map is a member of an auto-consistent system
of representation, since no representation of this type can express a spatially
inconsistent arrangement of furniture. Imagine that the sectional in the living
room were twice as large. Then it would be impossible even to lay out, without
stacking, all the furniture in their small living room. Correspondingly, it is
impossible to express this condition in a room map, for it is impossible to lay
out, without overlapping, furniture icons of appropriate shapes and sizes in a
small rectangular that stands for the living room.

This auto-consistency property of the system of room maps in turn allows us
to conduct graphical consistency proofs, such as the one conducted by Mrs. Mu-
rata. You arrange furniture icons in a bounded area on a room map, and the
expressed arrangement is thereby guaranteed to be spatially consistent.

It is important to note that the auto-consistency of a representation system
is always relative to some particular range of inconsistencies. A representa-
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tion system that is auto-consistent for some range of inconsistencies can fail
to be some other range of inconsistencies. For example, although the furni-
ture arrangement expressed by a room map is always spatially possible, it may
well be psychologically impossible for Mr. Murata, or culturally impossible in a
Japanese community. Accordingly, an graphical consistency proof with a room
map can establish only spatial consistency, and not psychological or cultural
consistency.

Example 2 Consider ordinary drawings of people such as Figure 2. Clearly,
one cannot be taller than oneself—one’s being taller than oneself is an incon-
sistent condition. And in fact, we cannot draw a line drawing of a person with
such a height. That would amount to drawing a personal figure that is longer
than itself. Similarly, it is impossible for a person A to be taller than a person
B who is taller than A, nor for A to be taller than B who is taller than C who is
taller than A. Correspondingly, we cannot draw line drawings of people of such
relative heights. In terms of Figure 2, expressing the first condition amounts
to drawing a figure that is both longer and shorter than the “B”-figure, and
expressing the second condition amounts to drawing a personal figure that is
longer than the “B”-figure but shorter than the “C”-figure. Clearly, both are
impossible endeavors.

Figure 2: A drawing of people. Try to add a personal figure that is both longer
and shorter than the left figure, or try to add a personal figure that is longer
than the left figure but shorter than the right figure.

Generally, a representation system that expresses relative magnitude of one
sort (relative height or percentage) by means of relative magnitude of another
sort (relative length, size, or height) is auto-consistent against violations of
the quasi-linearity of the expressed relation. Thus, the systems of bar charts,
line graphs, pie charts, and other graphics used for quantitative analysis have
analogous auto-consistency properties.

Such an auto-consistency property of course gives the system potential for
simple graphical consistency proofs. For example, consider if it is possible for
the following conditions to hold together:

(1) A is not taller than B.

(2) B is not taller than C.

4



(3) C is not taller than A.

Using the auto-consistency of the system of line drawings, one can draw a line
drawing expressing all these conditions and make it a proof of their consistency.
Figure 3 shows one of the many line drawings that would serve this purpose.

Figure 3: A line drawing that serves as a consistency proof of the conditions
(1), (2), and (3).

In contrast, we can easily express the inconsistent conditions of people’s
height with different types of representations. You can write them up in English
sentences such as: “A is taller than himself,” “A is taller than B but shorter
than B,” and “A is taller than B, B is taller than C, and C is taller than A.”
You could also use first-order sentences to express these conditions. Or you
can use a directed graph, such as Figure 4, where the edge denotes the taller-
than relation. Thus, the systems of English sentences, first-order sentences, and
directed graphs are not generally auto-consistent for people’s relative height.

Figure 4: A directed graph expressing inconsistent conditions of people’s height.

Example 3 Returning to an example of auto-consistency, consider a route map
of a subway system of the kind shown in Figure 5. In common subway maps, a
line with a particular pattern stands for a particular subway line (Jubilee line,
Midosuji line, etc.). A connection of two stations via a particular subway line is
then expressed by an corresponding type of line segments between two station
icons, while a non-connection is expressed by the absence of such line segments.
For example, the black line directly connecting the circles labeled “J” and “K”
in Figure 5 indicates that Line U connects the stations J and K directly, with
no station in between. On the contrary, the absence of a line segment directly
connecting the circles labeled “J” and “E” indicates the absence of a direct
connection between the stations J and E. Yet, the “J” circle and the “E”
circle is indirectly connected by two black line segments, and this indicates that
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Line U connects the stations J and E indirectly, with one station in between.
There is not even such an indirect connection between the circles labeled “J”
and “D,” and this indicates that no single subway line connects the stations J
and D.

Figure 5: A route map of a subway system.

Now, it is not possible for two stations to be both connected and disconnected
by the same subway line, nor for a station not to be connected to another
station when the first station is connected to a station that is connected to
the second station, nor for five stations to be connected to each other with
less than four direct connections. Correspondingly, it is not possible to draw a
route map that expresses any of these conditions: line segments cannot both
connect and disconnect two circles, line segments of a particular color or pattern
must connect two circles if line segments of that kind connect both circles to a
third circle, and it is not possible to connect five circles to each other with less
than four line segments. The system of route maps is auto-consistent against a
certain type of graph-theoretic inconsistencies.

Example 4 The system of Euler diagrams is auto-consistent for certain set-
theoretic inconsistencies. For instance, it is not possible for a set B to intersect
with a proper subset A of a set C without intersecting with the superset C.
Correspondingly, we cannot draw an Euler diagram that depicts sets in such
relationship: try to draw a circle that intersects with the circle labeled “A” in
Figure 6, and your circle will necessarily intersect with the circle labeled “B.”
Thus, however hard you may try, you cannot express a set disjoint from B that
intersects with its proper subset A.

Interestingly, we can draw a Venn diagram of such a set. In Figure 7, the
x-sequence indicates that B intersects with A, the y-sequence and the shading
in the “A”-circle in combination indicate that A is a proper subset of C, and
the shading in the intersection of the “B”- and the “C”-circle indicates that B
does not intersect with C. Thus, it expresses the set-theoretically inconsistent
condition of the three sets. The system of Venn diagrams is not auto-consistent
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Figure 6: An Euler diagram. Try to add a circle that overlaps with the “A”-
circle but not with the “B”-circle.

for this set-theoretic inconsistency and therefore cannot be used for a graphical
consistency proof in the standard set-theoretic domain.

Figure 7: Venn diagram expressing an inconsistent condition.

2 Analysis

These examples should have given an adequate evidence that a wide variety
of representations systems have auto-consistency properties, allowing us graph-
ical consistency proofs. What is then the semantic mechanism behind auto-
consistency properties?

We will explore this issue with mathematical tools of channel theory (Barwise
and Seligman, 1997), although we will keep a part of our discussions informal.
Mathematically oriented readers should consult chapter 20 and related chapters
of Barwise and Seligman (1997) for formal details of the concepts used in this
paper, such as “constraint,” “indication,” and “representation system.”

Intuitively, auto-consistency involves some correspondence between incon-
sistent conditions in the domain of representations and inconsistent conditions
in the domain of things represented. Take the example of the system of Euler
diagrams (Example 4). Due to some spatial constraints holding in the domain
of Euler diagrams, a certain arrangement of Euler circles is just impossible,
and this impossibility corresponds to the impossibility of a certain inclusion or
jointness relation in the domain of sets.

Let us make this intuition more precise. What exactly is impossible in
the domain of representations in the case of Euler diagrams? Due to spatial
constraints, it is impossible that the following three conditions hold together in
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a single Euler diagram1:

(4∗) A circle labeled “A” is inside a circle labeled “B.”

(5∗) A circle labeled “C” is outside a circle labeled “B.”

(6∗) A circle labeled “C” overlaps with a circle labeled “A.”

Due to the semantic conventions associated with the system of Euler dia-
grams, the conditions (4∗), (5∗), and (6∗) respectively indicate the following
conditions on the represented sets:

(4) The set A is a proper subset of the set B.

(5) The set C is disjoint from the set B.

(6) The set C has an intersection with the set A.

Corresponding to the mutual inconsistency of (4∗), (5∗), and (6∗), these
indicated conditions cannot hold together in a single situation. That is, the
conditions (4), (5), and (6) are also mutually inconsistent. Figure 8 depicts this
situation schematically.

Figure 8: Correspondence of inconsistencies in the system of Euler diagrams.

Now, (4∗), (5∗), and (6∗) must hold in any old Euler diagram expressing
(4), (5), and (6), but (4∗), (5∗), and (6∗) cannot hold together in a single Euler
diagram. It follows that no Euler diagram can express the conditions (4), (5),

1We are assuming that no distinct circles can have the same label in a well-formed Euler
diagram, making distinct sets denoted by distinct circles. “One-one denotation” rules of this
sort apply to objects in many different kinds of graphical representations, including circles in
Venn diagrams and station icons in subway route maps.
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and (6), which are mutually inconsistent. Here we see the correspondence of
inconsistent sets of conditions through the indication relation, and it accounts
for the inability of Euler diagrams to express a particular inconsistent set of
conditions. The system of Euler diagrams obviously involves many other cases
of semantic correspondence of inconsistent sets, and they combine to define a
significant range of inconsistent sets of conditions that cannot be expressed in
Euler diagrams.

Figures 9 shows another instance of corresponding inconsistent sets in the
system of route maps (Example 3). The conditions listed in the upper part of
the figure must hold in any route map if it is to express the conditions in the
lower part. Yet the set of conditions in the upper part is inconsistent. Hence
the incapability of the system to express the inconsistent set of conditions in
the lower part.

Figure 9: Correspondence of inconsistencies in the system of route maps.

How can we characterize these correspondences of inconsistent sets in more
general terms? Let us introduce certain terminology to ease our analysis. By
source types, we mean conditions that (potentially) hold in a representation,
such as the three conditions of Euler diagrams listed in the upper part of Figure
8. In contrast, target types are conditions that (potentially) hold in a represented
situation, such as the three conditions of sets A, B, and C listed in the lower
part. If Ω is a set of source or target types, we call Ω inconsistent if there is no
possible situation in which all members of Ω hold. Let us introduce the notion
of “projections of sets of source types” in the following sense:

Definition 1 (Projection of Sets of Source Types) A set Γ of source types
is projected to a set ∆ of target types in a representation system R if:

• Each member of Γ indicates at least one member of ∆ in R,

• Each member of ∆ is indicated by at least one member of Γ in R.
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For example, the set {(4∗), (5∗), (6∗)} of source types is projected to the set
{(4), (5), (6)} of target types in the system of Euler diagrams. The projection
is a one-one correspondence between the sets in this particular case, although
the above definition does not require a one-one correspondence. Also, the set of
source types listed in the upper part of Figure 9 is projected to the set of target
types listed in the lower part in the system of line drawings.

With this preparation, we can now give a general characterization of “incon-
sistency inducement”:

Definition 2 (Inducement of Inconsistency) A set ∆ of target types is an
induced inconsistency in a representation system R if:

• There is a set Γ of source types projected to ∆ in R,

• Every set Γ of source types projected to ∆ is inconsistent.

For example, the set {(4), (5), (6)} is an induced inconsistency in the system
of Euler diagrams. For there is a set, {(4∗), (5∗), (6∗)}, projected to it, and
while every set projected to it entails this set, it is inconsistent. Hence every
set projected to {(4), (5), (6)} is inconsistent. Likewise, the set of target types
listed in the lower part of Figure 9 is an induced inconsistency in the system
of line drawings. Each of these sets of target types cannot be expressed in the
respective representation system that induces it.

Note that an induced inconsistency in a given system is not necessarily in-
consistent. Definition 2 requires the inconsistency of the sets of source types
projected to the target type, but not of the set of target types itself. Thus,
the semantic mechanism of a system may “deem” a given set of target types as
inconsistent, while it is in fact consistent.

On the other hand, if a system R never makes this type of “errors,” we
will say that a constraint matching of type 1 holds in R. That is, a constraint
matching of type 1 is the following condition:

Constraint matching, type 1 For every set ∆ of target types, if some set
Γ of source types is projected to ∆ in R and every set of source types
projected to ∆ in R is inconsistent, then ∆ is inconsistent.

Typically, if a system ever induces an inconsistency, it induces more than
one inconsistencies. Every representation system cited in section 1 induces more
than one inconsistencies, as the discussions in that section show. So, it makes
sense to talk about the set of inconsistencies induced in a given system R. If, in
addition, a constraint matching of type 1 holds in R, we can think of that set as
a special range of inconsistencies that are correctly “tracked” by the semantic
mechanism of R. We will call this set “KR,” and call the members of this set
“KR-inconsistent” to distinguish them from inconsistent sets of target types
not tracked by R.

We will also call any set of target types outside this set “KR-consistent.”
Thus, even when a set of target types is KR-consistent, it may be inconsistent.
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Being KR-consistent only guarantees that the set is consistent so far as the
range KR of inconsistencies is concerned. The set may be inconsistent with
respect to some other range of inconsistencies not tracked by the system R.

Earlier, we roughly characterized the auto-consistency property of a rep-
resentation system as the inability of the system to express a certain range
of inconsistent conditions. We can now refine this characterization. That is,
the auto-consistency of a representation system R is nothing but a constraint
matching of type 1, where the set KR of induced inconsistencies correspond to
the “range of inconsistencies” that R cannot express. For, by the definition of
KR, every member of KR is a set of target types inexpressible in the system
R, and by the definition of type 1 matching, every member of KR is in fact
inconsistent.

More importantly, a constraint matching of type 1 holding in a system R
guarantees the following form of inferences to be valid:

Graphical Consistency Proof Express the set ∆ of information in the rep-
resentation system R. Conclude, from the success of that operation, that
∆ is KR-consistent.

This procedure is valid since, if some consistent set Γ is projected to ∆ in
R, then ∆ is not an induced inconsistency in R and not a member of KR.
Given the constraint matching of type 1, this just means ∆ is KR-consistent.
Now, one of the most efficient ways of verifying that some consistent set Γ of
source types is projected to ∆ in R is to actually construct a representation in
R that expresses ∆, and this is exactly what is done through actual drawing of
diagrams, charts, and maps. Thus, a graphical consistency proof is valid under
a representation system with a constraint matching of type 1.

Note, however, the consistency result obtained through this procedure is just
the KR-consistency of the set ∆, not the unconditional consistency of ∆. As
we noted above, the KR-consistency of a set ∆ of target sets only means that
∆ is consistent with respect to the particular range of inconsistencies tracked
by the system R, and ∆ may be actually inconsistent with respect to some
other range of inconsistencies. And this is just natural as a model of graphi-
cal consistency proofs performed under a particular representation system. For
example, the consistency of a particular furniture arrangement established in
Example 1 is just the spatial consistency of the arrangement, and not neces-
sarily the social or psychological or cultural consistency of the arrangement.
Likewise, the consistency of a subway route established in Example 3 is just
the graph-theoretical consistency of the expressed route, and not necessarily the
commercial or economical or urbanologistic consistency. Generally, consistency
established through a graphical consistency proof in a particular representation
system is limited in nature. Our model reflects this limitation in terms of the
limitation implied by the notion of KR-consistency.
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3 Physical On-Site Inferences

Shimojima (1995a, 1995b) has introduced the notion of free ride to capture
another common form of inferences typically done with graphical representa-
tions. Free rides are similar to graphical consistency proofs in that they exploit
a certain type of constraint matching between representations and represented
situations and that they essentially involve physical operations on representa-
tions for this exploitation. In this section, we will first review a few examples
of free rides and extend the analysis given in Shimojima (1995a). We will then
specify the common elements of graphical consistency proofs and free rides in
order to define the general notion of “physical on-site inference.”

3.1 Free Rides

Let us start with looking at two simple examples of free rides.

Example 5 Harry is asked to describe the geographical features of the village
in which he grew up, as accurately as possible, by memory. After some failed
trials of recollecting the geographical features of his home village with no tools,
he decides to draw an approximate map of his home town. On the basis of
fragments of his memory, he draws lines and curves on a sheet of paper to
represent the streets, pathways, rivers, and such. He then uses wood blocks
to represent the buildings that he remembers to have existed, and places them
on his map, to represent the approximate locations of those buildings. (He
keeps revising and supplementing the map, and eventually obtains a map that
represents his home town to the best of his memory.)

At the beginning of this procedure, Harry remembers the locations of a river,
two roads, and several houses, and constructs a tentative map (Figure 10, left).
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Figure 10: A manipulation of memory maps producing free rides.

Then he recollects one more piece of information about his home village,
that is:

(7) The house K was halfway between the houses L and M .

To present this new fragment of memory in his map, Harry puts a wood block
standing for the house K between the wood blocks standing for the houses L
and M (Figure 10, right).
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As the result of this simple operation, Harry’s map now presents many
pieces of new information, other than (7), that were absent from the initial
map. Among them are:

(8) The house K was across the house F over the river.

(9) The house K was closer to road 1 than the house M was.

(10) The house M was closer to the bridge S than the house K was.

(11) The house K and the house A had the road 1 in between.

To get the sense of utility of the system of Harry’s memory map, imagine
how many deduction steps would be needed if he tried to obtain the same results
with pure thought on the basis of the principles of geometry. By operating on
his map in the way described above, Harry has skipped all these complications
of computation, and obtain the information (8), (9), (10), and (11) almost “for
free.” The operation is extremely efficient, for the purpose of updating the
information content of his map toward the solution of the problem.

Example 6 We use Venn diagrams to check the validity of the following syllo-
gism:

(12) All Cs are Bs.

(13) No Bs are As.

(14) (Therefore) no Cs are As.

We start with drawing three circles, labeled “As,” “Bs,” and “Cs” respectively.
On the basis of the premises (12) and (13) of the syllogism, we shade the com-
plement of the “C”-circle with respect to the “B”-circle (Figure 11, left) and
shade the intersection of the “B”-circle and the “A”-circle (Figure 11, right).
Observing that the intersection of the “C”-circle and the “A”-circle is shaded as
a result, we read off the conclusion (14), and decide that the syllogism is valid.

Cs

As Bs

Cs

As Bs

Figure 11: A manipulation of Venn diagrams producing a free ride.

Again, we obtain a piece of information “for free” just by operating on
diagrams: updating a diagram on the basis of the information (12) and (13) lets
the diagram generate the information (14), which in turn lets us decide that the
syllogism is valid.
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In a nut shell, a free ride is an inferential procedure where we express the
set ∆ of information in a representation system R, observe that this operation
results in the condition σ that indicates the information θ, and conclude that
∆ entails θ.

Let us analyze the free ride in example 6 in more detail. Let us assume that
we start with a blank sheet of paper, say s. We apply a certain operation on
s to create a Venn diagram that express the target types (12) and (13). Due
to the semantic rules associated with Venn diagrams, this requires the resulting
sheet of paper, say s′, to support the following source types:

(12∗) The complement of a “C”-circle to a “B”-circle is shaded.

(13∗) The intersection of a “B”-circle and an “A”-circle is shaded.

These types respectively indicate (12) and (13), and make s′ express these
pieces of information. Interestingly, (12∗) and (13∗) not only indicate (12) and
(13), but also entail another source type, namely:

(14∗) The intersection of a “C”-circle and an “A”-circle is shaded.

That is, if you shade the complement of a “C”-circle to a “B”-circle and shade
the intersection of the “B”-circle and an “A”-circle, you end up shading the
intersection of the “C”-circle and the “A”-circle! Now, according to the semantic
rules associated with Venn diagrams again, this source type indicates the target
type (14). Thus, the Venn diagram s′ ends up with expressing the information
(14) too. Thus, one can simply read off the information (14) from s′, and since
(14) is entailed by the original information (12) and (13), one is making a valid
inference in this way. The major part of the inference, however, is not done by
the user’s thinking, but taken over by the entailment relation from (12∗) and
(13∗) to (14∗).

Figure 12 shows this analysis schematically, where a is the operation of draw-
ing applied to the blank sheet of paper s. Here we see a constraint on represen-
tations that makes (14∗) a consequence of the set {(12∗), (13∗)} of source types,
as well as a constraint on represented situations that makes (14) a consequence
of the set {(12), (13)} of target types. Moreover, the antecedent {(12∗), (13∗)}
is projected to the antecedent {(12), (13)} via the indication relation ⇒ associ-
ated with the representation system, while the consequent (14∗) indicates the
consequent (14). Thus, our analysis implies that a free ride is also a form of
inference that utilizes the semantic matching of a constraint governing repre-
sentations with a constraint governing the represented situations. This much
is the analysis of Example 6 given in Shimojima (1995a), which can be easily
extended to other cases of free rides such as Example 5.

What exactly is the type of constraint matching required for free rides then?
It is slightly different from type 1 of constraint matching, required for physical
consistency proofs. We therefore call it “type 2”:

Constraint matching, type 2 For every set ∆ of target types and every tar-
get type θ, if some set Γ is projected to ∆ in the system R and every set
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Figure 12: Analysis of a free ride in the system of Venn diagrams.

of source types projected to ∆ in R entails a source type σ that indicates
θ in R, then ∆ entails θ.

Note that this condition by itself does not allow the simple inferential proce-
dure we called “free ride.” For, if we are to simply use a constraint matching of
this type to conclude that ∆ entails θ, we need verify that every set Γ of source
types projected to ∆ entails a source type σ that indicates θ in R. This amounts
to exploring every way of expressing ∆ in the system and finding what will hap-
pen, while intuitively, a free ride consists in just expressing ∆ in a particular
way and observing what happens.

In actual cases of free rides, this gap is filled by the homogeneity of the
relevant representation systems. Intuitively, a system is homogeneous if, for
each set ∆ of target types, there is at most one “line” of expressing ∆ in the
system. For example, when you want to express the information (15) and (16) in
a line drawing, you must have three figures labeled “A,” “B,” and “C” satisfying
the conditions (15∗) and (16∗), and there is no way of expressing (15) and (16)
without having such figures.

(15) A is not taller than B.

(16) B is not taller than C.

(15∗) A figure labeled “A” is not longer than a figure labeled “B.”

(16∗) A figure labeled “B” is not longer than a figure labeled “C.”

Likewise, there is no way of expressing (12) and (13) in a Venn diagram with-
out having three circles satisfying (12∗) and (13∗). This is because the systems
of line drawings and Venn diagrams are both homogeneous systems. In fact,
all representation systems that have been considered in this paper are homo-
geneous. A typical example of heterogeneous system is the full representation
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system used in Hyperproof (Barwise and Etchemendy, 1994), which contains, as
its subsystems, a system of diagrams as well as a first-order language.

Let us define homogeneity and heterogeneity of a system more explicitly:

Definition 3 (Primitive Indicator and Homogeneous System)

• A set ∆ of target types is expressible in a representation system R if there
is a set Γ of source types projected to ∆ in R.

• A set Γ of source types is the primitive indicator of a set ∆ of target types
in a representation system R if Γ is projected to ∆ in R and every set of
source types projected to ∆ in R entails Γ.

• A representation system R is homogeneous if every expressible set of target
types has its primitive indicator; it is heterogeneous otherwise.

For example, the set {(15∗), (16∗)} of source types is the primitive indicator
of the set {(15), (16)} of target types in the system of line drawings, and
{(12∗), (13∗)} is the primitive indicator of {(12), (13)} in the system of Venn
diagrams.

When a system is homogeneous, we can express any expressible set ∆ of
target types with its primitive indicator, and observing the result of expressing
∆ in this way amounts to finding the common result of expressing ∆ in every
other way. Thus, we can exploit a constraint matching of type 2 without directly
exploring every possible way of expressing ∆. If you express ∆ with a primitive
indicator Γ, and if you find new information θ expressed as the result, it means
that Γ entails some source type σ indicating θ; but since Γ is entailed by every
set of source types projected to ∆, it follows that σ is entailed by every set
of source types projected to ∆; hence by a constraint matching of type 2, θ is
guaranteed to be an entailment of ∆.

Thus, in its exact form, a free ride is the following inferential procedure:

Free ride Express the set ∆ of information with its primitive indicator Γ. By
observing that the operation results in the condition σ that indicates the
information θ, conclude that θ is a consequence of ∆.

3.2 Three Characters of Physical On-Site Inference

So far, we have seen two different forms of inferences exploiting constraint
matching between representations and their targets. These forms of inferences
share several interesting properties: both use (1) perceptually accessible external
representations (2) as inferential surrogates (3) through applications of physical
operations on them. In view of these common properties, we call inferences in
either of these forms “physical on-site inferences.”

To make this notion more precise, let us clarify what each of these common
properties are. We start with the property (2).
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Inferential Surrogate Suppose we are thinking about a particular object
t. Let us say we are using another object s as an inferential surrogate when
we exploit the matching of constraints on s and constraints on t to make an
inference about t.

In this sense, external representations used in free rides, such as a Venn
diagram (Example 6), a memory map (Example 5), and other graphical repre-
sentations, are inferential surrogates. The target object t is a particular situation
represented by the representation at hand, such as a particular situation with
several sets in a certain inclusion relation (Examples 6) or a particular region
with a certain geographical configuration (Example 5). The relevant constraint
matching is specified as type 2, namely, the projection of constraints of the form
Ω � β to constraints of the same form. According to our analysis, a free ride is
an inference that exploits this particular type of constraint matching between a
representation s and the represented situation t, and hence it is an instance of
inference using an inferential surrogate.

Likewise, a graphical consistency proof uses an inferential surrogate. The
surrogate s is again a representation at hand, such as a room map (Example 1)
or a route map (Example 3), and the target object t is a particular room with
several pieces of furniture (Example 1) or a subway route with several subway
lines (Example 3). The constraint matching exploited is specified as type 1,
where a consistent set on s is projected to another consistent set on t through
the indication relation.

In this regard, our analysis is a clarification of the semantic mechanism be-
hind an important species of distributed cognition, namely, the case emphasized
by Giere (2001) when he says, “The visual representation is not merely an aid
to human cognition; it is part of the system engaged in cognition” (p. 8). In
physical on-site inferences, a cognitive burden of inference is partly transferred
from human brains to physical constraints on external representations: we put
the information to be processed into diagrams, charts, and others; the physical
constraints on these representations “calculate” a consequence of the expressed
information (free rides) or its consistency in a limited sense (graphical consis-
tency proofs); we can then observe the results of calculation by attending to the
new information expressed in representations or simply by checking whether
the information to be expressed has been actually expressed. Later, we will see
two more forms of physical on-site inferences that calculate non-consequence or
inconsistency. Conceptually, inferential surrogates in our sense are special cases
of “mediating structures” for distributed cognition (Hutchins, 1995).

Perceptual Presence Inferential surrogates used in physical on-site infer-
ences are objects such as Venn diagrams, Euler diagrams, route maps, memory
maps, and room maps. They are all representations on a piece of paper, a
computer display, or some other physical media, and they are accessible to our
vision, and in certain case, to tactile perception too.

Compare these cases with analogical reasoning in general. As far as they use
a particular object as a source for reasoning about another object, physical on-
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site inferences are a species of analogical reasoning. Yet the source object used
in analogical reasoning does not have to be perceptually present, and indeed,
cases typically cited as analogical reasoning involve source objects that are not
perceptually present at the time of inference (a fictional event of a troop at-
tacking a castle, planetary revolutions around the sun, and so on). In contrast,
the notion of physical on-site inference emphasizes the fact that perceptually
present representations, such as graphics on a piece of paper, often serve as
source objects for inference. Although it is not in the scope of this book to
study the exact internal processes involved in analogical inferences, it is clear
that the internal process of using a perceptually present objects as the source
is significantly different from that of using a perceptually inaccessible object.

Physicality It should be clear by now that free rides and graphical consistency
proofs have essential physical components. Expressing a certain information set
∆ is a physical operation on a representation, and each form of inference draws
a different type of conclusion from the result of that operation: a consequence
conclusion when a piece of information is automatically expressed (free ride)
and a consistency conclusion when ∆ is successfully expressed (physical consis-
tency proof). In each case, the physical operation and the accompanying result
plays the role of verifying the existence or non-existence of a constraint on the
representation, and under certain types of constraint matching, the existence
or non-existence of a constraint on the representation guarantees the existence
of the constraint or non-constraint to which it is projected. Thus, a physical
operation plays a significant, or even dominant, role in this inferential process,
and it saves a significant amount of inferential task on the part of the user.

In this regard, our analysis should capture at least some instances of what
Magnani (2001) calls “manipulative abductions.” Magnani’s focus is on pro-
duction of explanatory hypotheses in scientific practices through physical ma-
nipulations of experimental devises. Yet the notion also covers manipulations of
concrete models and diagrams (pp. 62–63), and our account could be considered
specifications of the exact inferential procedures and semantic requirements in-
volved in (some of) these cases. Although we have not considered any particular
cases of manipulative abductions in scientific practices, how much of them are
physical on-site inferences in our sense is an intriguing question.

3.3 Other Forms of Physical On-Site Inferences

Once the notion of physical on-site inference is thus clarified, it is obvious that
there are at least two other forms of inferences that fit the definition. They are:

Physical non-consequence proof Express the set ∆ of information in the
representation system R. By observing that the operation does not result
in some condition σ that indicates the information θ, conclude that θ is
not a KR-consequence of ∆.
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Physical inconsistency proof Try to express the set ∆ of information with
its primitive indicator Γ. Conclude, from the impossibility of that opera-
tion, that ∆ is inconsistent.

Remember that a free ride is the form of inference that utilizes a constraint
matching of type 2 to conclude the existence of a constraint on represented situ-
ations from the existence of a constraint on representations. The first inferential
procedure listed above is a flip side of this procedure, and it utilizes a constraint
matching of type 2 to conclude the non-existence of a constraint on represented
situations from the non-existence of a constraint on representations.

Here, the notion of KR-consequence is defined analogously as the notion of
KR-inconsistency. A target type θ is an induced consequence of a set ∆ of target
types in a representation system R if some set Γ is projected to ∆ in R and
every set of source types projected to ∆ in R entails at least one source type
σ that indicates θ in R; if every induced consequence is in fact a consequence
of the relevant set of target types, an induced consequence in R is called KR-
consequence. A constraint matching of type 2 is exactly this condition, and it
is straightforward to prove that every physical non-consequence proof is valid
in a system satisfying this condition.

As the name suggests, the second inferential procedure listed above is a flip
side of graphical consistency proofs: while physical consistency proofs utilize a
constraint matching of type 1 to conclude the non-existence of a constraint on
represented situations from the non-existence of a constraint on representations,
physical inconsistency proofs utilize a constraint matching of the same type
to conclude the existence of a constraint on represented situations from the
existence of a constraint on representations.

Although we do not have space to give actual examples of physical non-
consequence proofs and physical inconsistency proofs, these forms of inferences
are as common as free rides and graphical consistency proofs, and they are
conductible on the basis of ordinary graphical representations such as Euler
diagrams, route maps, line drawings, and geometry diagrams.

4 Summary

In this paper, we investigated the semantic mechanism of graphical consistency
proofs, where one constructs a chart, a diagram, or some other external repre-
sentation that expresses certain conditions, and uses its existence as a proof of
the consistency of the expressed conditions. We found that an auto-consistency
property responsible for a system’s capacity of such a proof can be character-
ized as a matching of constraints (specified as type 1) between representations
and represented situations. We then extended our analysis to another types
of graphics-based inferences called “free rides,” and showed that they also rely
on a matching of constraints (specified as type 2) between representations and
represented situations. Comparisons of these procedures let us see three com-
monalities between them, and define the general notion of physical on-site infer-
ence as procedures using perceptually present objects as inferential surrogates
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through physical operations. Our analysis is therefore clarifications of the exact
processes and semantic requirements under which a visual representation partic-
ipate in distributed cognition (Giere, 2001) or manipulative inferences (Magnani
2001).
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