
Abstract

Surrogate reasoning is reasoning whose task is partially taken over by
operations on external aids, such as sentences, diagrams, physical mod-
els, mathematical models, and computers. Drawing on the basic concepts
in situation theory, we present a semi-formal model of surrogate reason-
ing. We claim that the relative advantages and disadvantages of different
forms of surrogate reasoning can be explained with reference to the ways
in which the default constraints on surrogates intervene in the processes
of reasoning. We define and examine two prominent patterns of such
constraint intervention (dubbed “free rides” and “overdetermined alter-
natives”). We also introduce the notion of “constraint projection” and try
to capture the general framework in which different forms of constraint
intervention take place in surrogate reasoning. Key words: surrogate rea-
soning, diagrammatic reasoning, constraint projection, situation theory,
modeling.
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Introduction

Surrogate reasoning in problem solving A “problem” is a mystery, a
question, a source of uncertainty. Problems range from the mundane, like finding
your way to some place you have never been before, to the profound, say that
posed by Fermat’s Last Theorem or understanding the origin of life. “Problem
solving” involves eliminating or reducing the uncertainty by finding an a answer
to the problem. “Reasoning” is the process by which one starts with a problem
and attempts to arrive at a solution.

Following Barwise and Etchemendy (in press), we suggest conceptualizing
of a problem in terms of a space of unexplored possibilities, the mystery being
what structure this space has and what resides there. In terms of this metaphor,
we can think of problem solving as finding out enough about the space of pos-
sibilities to eliminate the mystery at hand. In these terms “reasoning” is the
process of exploring the space of possibilities presented to us by the problem.

The most usual way to think about problem solving within cognitive science
is as a variety of thought. After all, we do think when we solve problems, and
sometimes it seems that that is just about all we do. Conversely, a fair amount
of thinking can be seen as problem solving: solving the problem of getting
around in the world. Indeed, it is not uncommon within cognitive science to
find thinking and problem solving more or less identified.

This identification is a mistake. On the one hand, there are forms of thought
that are not problem solving. But more to the point of this paper, there is
frequently more than thinking involved in finding a solution to a problem. If
a problem is at all difficult, we typically solve it with the use of external aids.
Such aids include things like pencil and paper, calculators, computers, sentences,
diagrams, physical models, mathematical models, and human experts. It is this
sort of activity which we refer to as surrogate reasoning: the exploration of a
space of possibilities using tools external to that space.

Once realized, the ubiquity of surrogate reasoning is almost too obvious to
belabor. But given the lack of attention that has been paid to it, perhaps it
deserves a bit more space. Suppose you are going to move to a new town and
decide to build a new home. Various problems arise: where should you build it?
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How can you afford it? Who will build it? And what will it be like? Typically,
solving each of these problems will involve surrogate reasoning of various kinds.
Take, for example, the last, that of finding a design for a house that will fit your
needs, budget, and piece of land.

What tools do we use to solve this problem? Architects, sketches, drawings,
furniture-shaped cutouts, scale models, and computer simulations of interior
spaces. No one in their right mind would try to solve the problem of designing
their house by means of pure thought, pondering just over the house itself.

Let’s take an example which seems at first sight more amenable to pure
thought: the solution to a mathematical problem. One of the most obvious
but under appreciated facts about mathematical reasoning is that it is done on
things like pencil and paper (or chalk and blackboards). Whether one is trying
to prove a theorem or just compute 345 × 429, the use of surrogates is more or
less indispensable.

To list a few more examples of surrogates used in problem solving:

Sentences We record information at hand in the form of sentences, and derive
further information by using those sentences both as memory aids and
reference sites. For example, when we construct a proof within an axiom-
atized theory such as zfc set theory, we typically start with writing down
the assumptions in the form of sentences. We then refer to the axioms
and the sentences we have written down, and add more sentences that are
“derivable” on the pre-determined inference rules. These new sentences
typically let us read off pieces of information different from our initial
assumptions.

Diagrams We often obtain a quicker and easier solution of a problem by rep-
resenting information in a diagram. We use versions of Venn diagrams
or Euler circles in solving problems about inclusion and membership rela-
tions among sets and individuals. Diagrams are more or less indispensable
tools in geometry proofs. Maps, flow-charts, blue-prints, graphs, and ta-
bles are used not only as final displays of information, but also as aids to
an on-going process of problem solving.

Physical models Architects use various kinds of architectural models in de-
signing a building. They use models to facilitate their reasoning about the
outlook, the sun-orientation, the ventilation, the acoustic condition, the
lighting condition, and the temperature distribution of the building that
they have in mind. Researchers use dummies in car crush tests to predict
the possible damages that a human body receives in various situations of
car crush.

Mathematical models and computer simulation Scientists, system ana-
lysts, and product designers often use mathematical models in place of
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physical models. Mathematical models are typically presented as math-
ematical theories often consisting of a system of equations whose solu-
tions provide quantitative predictions of the target phenomena. In many
cases, mathematical models are implemented as computer programs that
let computers display the behaviors of the targets in one way or another.

Heterogeneous surrogates It is rather rare that only one type of surrogates
is used in a problem solving. We record the behaviors of a physical model
in the form of sentences. Geometry proofs are most natural when a mix-
ture of sentences and diagrams is used. Even a mixture of different types
of diagrams is used in analyzing the behaviors of complex system, such as
computer hardware and human bodies.

Main questions At first sight, surrogate reasoning can seem like a strange
thing to do. Rather than reason solely about the problem at hand, we have to
also reason about the aid or aids used, and about their relationships to the prob-
lem. In this way we seem to replace one problem by three problems. However,
as the above examples show, there are good reasons to think that there can be
a large payoff: one may well be able to solve problems by means of surrogate
reasoning that one could not solve without it. On the other hand, for a given
problem, various forms of surrogate reasoning may be more or less appropriate
than others, where appropriateness is judged in terms of some combination of
efficiency and reliability. For example, calculators provide a more efficient and
reliable solutions to a wide range of calculation problems than abacuses or pen-
cil and paper do, which are in turn more efficient and reliable than resorting to
mental arithmetic. Asking experts often provides a quicker solution to a prob-
lem than working it out on one’s own. Venn diagrams let us solve a range of
problems in a more perspicuous fashion than traditional sentence-based rules.1

In this paper we start to explore the relative advantages and disadvantages of
different forms of surrogate reasoning in different tasks of problem solving. The
main question we address in this paper is this: what are the factors that make
a particular form of surrogate reasoning particularly appropriate for a given
problem domain. What exactly are the mechanisms by which some forms of
surrogate reasoning gain or lose these relative advantages? Are there principled
explanations of these differences in efficiency and reliability of different forms of
surrogate reasoning?

We will show that there is a path to such principled explanations. The gist of
our idea is the following. In surrogate reasoning, one chooses a certain collection

1There are additional considerations involved in the choice of a particular form of surrogate
reasoning. Some forms of surrogate reasoning are easier to learn than others. Some are more
widely applicable than others. Some forms of surrogate reasoning not only solve a particular
problem, but also give greater general insight into the problem domain, insight that may be
useful in solving future problems. We, however, confine ourselves to the issues of reliability
and efficiency in this paper.
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of objects as “source objects” to reason about other “target objects” by using
some “semantic conventions.” We operate on the source objects, get information
about the resulting source objects, and then interpret that information to obtain
information about the target objects.

The source objects are themselves objects in the world, and as such subject
to certain constraints imposed by natural (and other) laws. Now, depending
on the ways we operate on and interpret our source objects, these constraints
intervene in the above process of derivation in various ways. Consequently
these constraints may affect the overall processes of problem solving. Our basic
thesis is that most advantages and disadvantages of various forms of surrogate
reasoning can be explained with reference to the ways these constraints on source
objects intervene in the processes of problem solving. Let us call this thesis the
“constraint hypothesis.”

Surrogate reasoning and cognitive science Science attempts to solve
problems. As a branch of science, cognitive science attempts to solve the prob-
lems about cognition. Probably the most profound question addressed by cog-
nitive science has to do with the nature of thought. What is it to think? How
do people do it? What are the cognitive processes involved, and how are they
related to the physical processes in the brain?

Despite this overwhelming trend, we think that the subject of surrogate
reasoning is a very important one for cognitive science. One reason is that, as
we have seen, it is a ubiquitous form of cognitive activity. In fact, it may be
that the natural domain of cognitive science is problem solving, with its reliance
on surrogates, not thinking per se. We think this shift in focus could give a new
grip on old problems.

There is another reason to think that surrogate reasoning is an important
subject of cognitive studies. Cognitive science makes great use of metaphor
in trying to account for the nature of cognition. “The mind is like a Turing
machine.” “Thinking is computation.” “Thinking is manipulating sentences in
the language of thought.” “Thinking is the construction and examination of
mental models.”

Metaphor is itself a form of surrogate reasoning. We try to understand one
thing in terms of something else. But that is not the point we are trying to
make here. Rather, look at the things that thinking is being likened to in these
various metaphors: computation on a computer, manipulating sentence tokens
in some language, the constructing and examination of models. These are all
powerful tools used in surrogate reasoning. It is as though, being impressed
by the power of some tool for the use of problem solving, we take the function
of that particular tool to be paradigmatic of all thought. One could even take
the naive view that “thinking is listening to the voice of reason” as a metaphor
where thinking is likened to another form of surrogate reasoning: taking advice
from an expert. This view is surely unhelpful, though, since it amounts to
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nothing more than a homunculus theory of mind.
This is not to say that all such metaphors are wrong-headed. It may be that

the tools used in particular forms of surrogate reasoning will provide illuminating
models for understanding various forms of cognitive activity. We hope it will.
Indeed, this is what makes us think that an understanding of the varieties and
mechanisms of surrogate reasoning can make a direct contribution to the ongoing
discussions in cognitive science.2

We will start our main discussion by spreading out the framework in which
we understand surrogate reasoning in general. After defining key concepts such
as “constraint” and “reasoning system,” we will illustrate two particular ways,
the cases of “free rides” and “overdetermined alternatives,” in which the default
constraints on surrogate objects intervene in the process of reasoning. We will
then generalize our discussion and define when a reasoning system “projects” a
constraint onto its target domain. The notion captures the general framework
in which various forms of constraint intervention can take place in surrogate rea-
soning. We will close our discussion by reformulating our constraint hypothesis
in terms of this general notion of constraint projection.

Basic concepts

Our approach to the problem of understanding surrogate reasoning is mathe-
matical. We are developing a mathematical model of the process and using the
model to understand the process. Reasons of time, space, and appropriateness
for the audience prohibit us from giving the details of this model here. We will,
instead, work at a rather informal and intuitive level.3

Target domain Reasoning is a process of problem solving. We see this pro-
cess as an intentional one: a reasoner is trying to solve a problem about some-
thing. This thing may be very concrete (a car that won’t work or a city you
need to find your way around) or abstract (the natural numbers or the economic
situation in the nation), but it is there (or at least presumed to be there). We as-
sume that the target t of a problem is a certain situation, which can be classified
by states of affairs, or infons, that hold in it.

Given a target situation t, we assume that there is a fixed set Θ of states of
affairs that can possibly classify t. Given the set Θ, there is in turn a fixed set

2Indeed, some theorists do not only take surrogate reasoning as a useful model of thinking,
but also identify thinking with a manipulation of mental surrogates. For those people, thinking
is a species of surrogate reasoning, and our previous contrast between surrogate reasoning and
thinking will seem misguided. Although we do not commit ourselves to such literalist views,
our discussions of surrogate reasoning will have even more direct implications for them.

3Those familiar with situation theory, say Barwise (1989) and Devlin (1991), will find this
framework already familiar.
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T of possible situations that the members of Θ can classify. We call the pair
T = 〈T, Θ〉 the target domain of the instance of reasoning in question. If t and
θ are members of T and Θ respectively, we write t |= θ, read “t supports θ, to
indicate that θ hold in t. We call members of Θ “target infons.”

We conceptualize a (well-formed) problem as a pair P = 〈ΘI ,ΘG〉 of sub-
sets of Θ. Intuitively, ΘI is the initial information or “clues” that a problem
solver initially has about the target situation t. Each member of ΘG is pos-
sibly true information about t that counts as an answer to the problem P .
Thus, when Holmes wonders who murdered Smith, he is addressing the prob-
lem P = 〈ΘI ,ΘG〉 where ΘI is the total information he possesses about the
target situation t in which the murder occurred, and ΘG comprises all the tar-
get infons of the form:

X murdered Smith.

If Homes wonders whether or not Jones murdered Smith, then ΘG would contain
only two members:

Jones murdered Smith.

Jones does not murder Smith.

Holmes may just be wondering what happened in the murder situation t. In
that case, ΘG coincides with Θ—any information that can classify t counts as
an answer to his question. If Holmes wonders what actions he should take to
arrest Jones safely without hurting him, then the target situation of his problem
is a future situation t′ in which Holmes takes actions to arrest Jones. The initial
information ΘI of his problem comprises some background information about
t′ such as:

Holmes arrests Jones.

Jones has already shot a man.

Jones has a gun.

and the possible answers ΘG comprises the infons of the form:

If Holmes does X1, and then X2, . . . , and then Xn, then Holmes is
safe and Jones is not hurt.

where X1, . . . , Xn are types of actions.

Surrogate domain While we use a surrogate object to reason about a target
situation, the surrogate typically goes through a sequence of change in its states.
We call these states of the surrogate surrogate situations. Thus, a calculator
is in different surrogate situations before and after we push one of its keys; a
diagram is in different situations before and after we add a stroke, and so on.
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In order for our reasoning to use a surrogate, we must have ways of obtaining
information about the surrogate situations. Typically, this is by perception: we
look at the page or abacus, we read the sentences or look at a diagram, we listen
to the expert or read their report. In any case, we must somehow inspect par-
ticular situations that our surrogate enters into, and obtain information about
those situations. We call the pieces of information that classify surrogate situ-
ations “surrogate infons.” Thus, the surrogate situations of a calculator c can
be classified by the following surrogate infons:

The numeral “0” is displayed.

The numeral “5” is displayed.

The numeral “9” is displayed.

The numeral “45” is displayed.

The numeral “0” is not displayed.

The numeral “5” is not displayed.
...

Just as in the cases of target domains, a set of surrogate situations S and a
set of surrogate infons Σ form a domain of classification S = 〈S, Σ〉 if S exhausts
all the situations that the members of Σ can classify, and Σ exhausts all the
infons that can classify the members of S. We call the domain S = 〈S, Σ〉 the
surrogate domain of the on-going process of reasoning.

Information link In order for information σ about a surrogate situation s
to give us information θ about a particular target situation t, there must be (i)
some sort of semantic convention σ ⇒ θ that holds at the level of information,
and (ii) some sort of signaling relation s ❀ t that holds at the level of situations.
Consider the following diagram:

Jon Atsushi

Figure 1

Let s be the particular situation on the paper that this diagram is in. De-
pending on what semantic convention ⇒ and signaling relation ❀ are associ-
ated, the situation s can carry many different pieces of information about many
different situations: s may be targeted at the current situation t of Jon’s and
Atsushi’s properties, and carry the information that Jon’s horse is black while
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Atsushi’s white; s may be targeted at the future situation t′ of Jon’s and At-
sushi’s properties as of three years later, and carry the information that Jon’s
horse is dead while Atsushi’s alive; or s may be targeted at the current situation
t′′ of the horses named “Jon” and “Atsushi,” and carry the information that
Jon can run a hundred meters in less than ten seconds while Atsushi cannot.

Intuitively, the signaling relation ❀ determines what particular situation
a surrogate situation s is targeted at, and ⇒ determines how to translate the
information about s into the information about the target situation. Thus, given
a surrogate domain S = 〈S, Σ〉 and a target domain T = 〈T, Θ〉 for reasoning,
we can conceive ❀ as a binary relation from S to T and ⇒ as a binary relation
from Σ to Θ. We say that a surrogate situation s represents a target infon θ,
and write s |⇒ θ, if there is some σ such that s |= σ and σ ⇒ θ, that is, if
some state of affairs σ that holds in s encodes the state of affairs θ relative to
the semantic convention. If Θi is a set of infons, we write s |⇒ Θ to mean that
s |⇒ θ for each θ ∈ Θi.

The pair of relations L = 〈❀,⇒〉 provides what Barwise (1991) has called a
“link” between the domain of source objects and the domain of target situations.
The link is reliable if every surrogate situation is accurate. Of course surrogate
reasoning is not in general reliable in this strong sense. What interests us is
determining in what makes such a link more or less reliable, and what makes
getting information about t indirectly, via s, more or less efficient than getting
information about directly about t itself.

Domain of operations In reasoning with surrogate objects about some tar-
get situation t, reasoners do things to these surrogate objects, they operate on
them in certain ways. Think of the operations in doing a computation with a
calculator, computers, pencil and paper, or abacus. Or think of the operations
involved in using sentences of first-order logic or Venn diagrams in solving a
logic puzzle. Or think of asking an expert a question. These all involve starting
with an initial surrogate situation sI that signals a target situation t, perform-
ing some action a (or sequence of actions) on it, and getting a new surrogate
situation sO for t. Based on what information we obtain from sO, we might
perform additional actions, still in an attempt to get some desired piece of in-
formation about our target t. It is useful to think of these actions in realistic
terms, as certain kinds of events in the world that start with an initial situation
and result in another situation; we write this as sI

a	−→ sO which is read “action
a has sI as input situation and sO as output situation.” We assume that each
action has a unique pair of input and output situations.

Actions are particular events a, a′, . . . in the world. These events have their
own types. We suppose that these types are given by a system of infons ω, ω′, . . .
used to classify actions. Thus, we are assuming that actions used in surrogate
reasoning constitute a domain of classification A = 〈A,Ω〉, just as surrogate
situations and their target situations do. A domain of actions A = 〈A,Ω〉
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consists of the class A of all possible actions that the members of Ω can classify,
and the class Ω of all infons that can classify these actions. We write a |= ω if a
is of type ω. Given a domain of actions A = 〈A,Ω〉 and a domain of surrogate
situations S = 〈S, Σ〉, we say that A plays on S iff every action in A has its
input situation and output situation in S.

For example, multiplying 5 by 9 on a calculator c that initially displays
“13” might be classified in this framework with five actions and six calculator
situations as follows. (We assume that this calculator has two memory locations,
the input and the register, and a display.)

c0
a1	−→ c1

a2	−→ c3
a3	−→ c3

a4	−→ c4
a5	−→ c5

where

c0 |= The numeral “13” is displayed.
a1 |= Atsushi taps on the “C” key.
c1 |= The input and the register contain 0; the numeral “0” is

displayed.
a2 |= Atsushi taps on the “5” key.
c2 |= The input contains 5; the register contains 0; the numeral “5”

is displayed.
a3 |= Atsushi taps on the “∗” key.
c3 |= The input contains 5; the register contains 5; the numeral “5”

is displayed.
a4 |= Atsushi taps on the “9” key.
c4 |= The input contains 9; the register contains 5; the numeral “9”

is displayed.
a5 |= Atsushi taps on the “=” key.
c5 |= The input and the register both contain 45; the numeral “45”

is displayed.

Methods Our notion of “method” is a generalization of the notion of “rule
of inference” in logic. Roughly speaking, a method is a set of rules that specify
what types of actions can be taken under what circumstances. For the purpose
of this paper, we can model such a system of instructions by means of a class M
of pairs 〈θ, ω〉 of target infons θ and action types ω. Intuitively, an individual
rule 〈θ, ω〉 allows the following action: given that the target situation t |= θ,
carry out any action a such that a |= ω. Thus, the method M allows a sequence
of actions a1, . . . , an of the type ω1, . . . , ωn on the assumptions {θ1, . . . , θn} if
for each ωi, M contains a member 〈θ, ωi〉 such that θ ∈ {θ1, . . . , θn}.

Constraints The concept of a “constraint” is a central one in our model
of surrogate reasoning. Intuitively, a constraint (in the sense used here) is a
constraint on the way different states of affairs can hold in a situation. A
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constraint may hold on a set of situations either logically or more locally. Let
us spell out the idea.

Let D = 〈D,∆〉 be any domain of classification, either of targets situations,
surrogate situations, or actions. A constraint is a pair of any subsets ∆1,∆2 of
∆, and we use the notation ∆1 � ∆2 to denote the constraint. A constraint may
or may not hold on the domain D. We say that the constraint ∆1 � ∆2 logically
holds on D iff for every situation d in D, if every infon in ∆1 holds in d, then at
least one infon in ∆2 holds in d. Thus, a logical constraint is a constraint that
governs every situation in the domain without exception.

Even if a constraint is not a logical constraint, and thus allows certain ex-
ceptions, it might be something that governs “normal” situations, something
fairly regular and reliable. The notion of “local” constraint is to capture this
kind of constraints. Let D� be the set of normal situations in D. (So, D� is a
subset of D.) We say that a constraint ∆1 � ∆2 locally holds on the domain D
iff for every situation d in D�, if every infon in ∆1 holds in d, then at least one
infon in ∆2 holds in d. Notice that every logical constraint is a local constraint.
Thus, we can conceive the set of local constraints as a system of a stronger,
extra-logical laws that govern the domain. We will use “T�,” “S�,” and “A�”
to denote the sets of normal situations in the target domain T , the surrogate
domain S, and the domain of actions A respectively.

Examples of local constraints Let M and ⇒ be the method and the se-
mantic convention adopted in an instance of surrogate reasoning. We assume
that there is a range of “normal” target situations T� that M and ⇒ are de-
signed to cover, and there is a system of “target constraints” that reasoning
with M and ⇒ is supposed to capture. This system of target constraints often
consists of special, extra-logical constraints, such as geometrical laws, physical
laws, and social conventions, depending upon the application M and ⇒ are
designed for. These are the examples of local constraints holding on the target
domain.4

Let us turn to the cases of surrogate domains and domains of actions. Given
an operation method M and a semantic convention ⇒, there is a range A�

of “normal” operations that M and ⇒ are designed for, and a system of lo-
cal operational constraints that they are designed to work under. Operations
outside A� are logically possible, but “abnormal” operations, which constitute
exceptions to the given operation method M. Furthermore, there is a range of
normal surrogate situations S� that M and ⇒ are designed for, and a system of
local constraints on surrogate situations that they are designed to work under.

Imagine that you are trying to solve a logic problem with Venn diagrams.
You draw three partially overlapping circles a, b, and c. You then shade the

4Of course, there are many pairs of methods and semantic conventions that are designed
to capture only the logical constraints governing target domains—first-order calculus, Venn
diagrams, and semantic tableau are all associated with such pairs.
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complement of c with respect to b, and shade the intersection of b and a.

a b

c

a b

c

a b

c

Figure 2

Having done all this, you will probably expect that the intersection of the
c and a is shaded. In fact, this is an assumption made by Venn himself—
the method and the semantic convention associated with Venn diagrams are
designed to work under the assumption that this constraint holds.

This is not a logical constraint since there are some exceptional circum-
stances in which it does not hold. Think of drawing the diagram with the
toy pen, whose “magic” ink fades away a few seconds after it is put on paper,
or imagine drawing the diagram into a computer which automatically distorts,
moves, and sometimes erase what you draw. In these circumstances, even if you
execute a sequence of operations described above, there is no guarantee that the
intersection of the circle a and the circle c gets shaded. Still, the operational
constraint that you and Venn have assumed is fairly reliable—reliable enough
for the normal practices of logic students to depend on it.

Even if we bar the above tricky circumstances, and assume that everything
that we draw is preserved until the end of the derivation, the assumed constraint
is not a logical necessity. The constraint can be used in our reasoning only
because the following local constraint holds on the surrogate domain:

{Three circles, a, b, c, partially overlap,
The complement of c with respect to b is shaded,
The intersection of b and a is shaded}
� {The intersection of b and a is shaded}

This is certainly not a logical necessity—it is an extra-logical constraint rooted
in the geometrical and physical properties of the circles being drawn.

Throughout this paper, we use the phrase “a default constraint on surro-
gates” to mean a local constraints on either the domain A of actions or on the
domain S of surrogates. When we discuss the possible ways in which the default
constraints intervene in the process of reasoning, we will see that some of the
cases are rooted in the local constraints on the surrogate domain but that some
rely on constraints on actions.5

5It is interesting to observe that a local constraint on a surrogate domain S can be reflected
in a local constraint on a domain of actions that plays on S. For example, the geometrical con-
straint described above is reflected in the operational constraint on Venn diagrams described
earlier.
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Reasoning systems Given an instance of surrogate system, there are four
elements associated with it: a target domain T , a surrogate domain S, a domain
of actions A, a method M, and a semantic convention ⇒ associated with it.
Furthermore, as we have just seen, a method M and and a semantic convention
⇒ are always designed on the assumption that there are a set T� of normal
target situations to capture, a set S� of normal surrogate situations to work
on, and a set A� of normal actions to work with. We capture this association
of different elements with the notion of “reasoning system.” Thus, a reasoning
system is a quintuple R = 〈T ,S,⇒,A,M〉 consisting of:

• a target domain T = 〈T, T�,Θ〉,

• a surrogate domain S = 〈S, S�,Σ〉,

• a semantic convention ⇒ defined on Σ × Θ,

• a domain of actions A = 〈A, A�,Ω〉 that plays on S, and

• a method M defined on Θ × Ω.

Note that the domains T , S, and A now have their “normal” subsets T�, S�,
and A� incorporated in them. These subsets serve to characterize the sets of
local constraints holding on their relevant domains. We will deal with instances
of surrogate reasoning that can be modeled by a reasoning system in this sense.

Free rides and overdetermined alternatives

Our claim is that most of the advantages and disadvantages of particular forms
of surrogate reasoning can be explained with reference to the ways the default
constraints on the surrogate objects intervene in the process of problem solving.
But how exactly do the default constraints on surrogate objects intervene in a
processes of problem solving? In this section, we will illustrate two typical pat-
terns of constraint-intervention, which we dub “free rides” and “overdetermined
alternatives.”6 Let us start with “free rides.”

Compare the following three stages of a problem solving scenario:

Scenario 1, Stage 1 A ninety-three year old man is asked to describe the
geographical features of the town in which he grew up, as accurately as possible,
by memory.7 The problem is about the locations of various geographical features
of his home town in a particular period, and about their spatial relationships. He

6Shimojima (in press-a) proposes formal definitions of the phenomena of free rides and
overdetermined alternatives in diagrammatic reasoning. Our own treatment of those phenom-
ena will remain informal, but will cover a wider range of surrogate reasoning.

7Hohauser (1982) reports that a Polish man named Harry Lieberman was actually engaged
in this type of activity. The book does not explain why his home village was so important.
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first tries to solve the problem by pure thinking. Starting with his fragmented
memories about the town and relying on the principles of geometry, he performs
mental deductions of further information. Through these deductions, he tries to
obtain a largest possible, consistent body of information about his home town.
(The result of a deduction may or may not be consistent with the rest of his
memory. If it is not consistent, he has to revise at least a part of his memory. So,
the process is not monotonic.) This process is not a case of surrogate reasoning,
if we preclude the possibility of “mental surrogates” (such as mentalese and
mental models).

Stage 2 The man gives up the mental deduction method, and starts writing
down the fragments of his memory one by one in the form of sentences. He then
writes down what he can deduce from these sentences on the basis of the princi-
ples of geometry. This way, he hopes, he will eventually have a large collection
of sentences that describe the geographical features of his home town. (Again,
the process may not be monotonic.) This is a case of surrogate reasoning, whose
source objects are the sentences he writes down on the piece of paper.

Stage 3 He gets bored or frustrated writing down sentences. Instead of rep-
resenting the fragments of his memory in the form of sentences, he now tries to
draw a approximate map of his home town. On the basis of fragments of his
memory, he draws lines and curves on a sheet of paper to represent the streets,
pathways, rivers, and such. He then uses wood blocks to represent the buildings
that he remembers to have existed, and places them on his map, to represent the
approximate locations of those buildings. He keeps revising and supplementing
the map, and eventually obtains a map that represents his home town to the
best of his memory. The source objects in this case are the drawings and the
wood blocks on the piece of paper.

What we call “free rides” occur in Stage 3. Suppose the man remembers the
locations of a river, two roads, and several houses, and constructs the following
tentative map:
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Figure 3
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He thinks that the house K was between the houses L and M . On this
assumption, he puts a wood block that represents the house K between the
wood blocks representing L and M on the map:
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Figure 4

Notice that, in virtue of geometrical constraints that govern the map, the
wood block K is now in various spatial relationships with other objects on the
map: it is across the block F over the river line, it is closer to road line 1 than
the block M is, while M is closer to the bridge symbol S than K is, K and A
has a road line 1 in between, and so on. The map obtains these properties as
consequences of the man’s operation of placing the block K between the blocks
L and M . And of course, these properties encode various pieces of information
on the semantic convention that he adopts—that the house K was across the
house F over the river, that it was closer to road 1 than the house M was, that
the house M was closer to the bridge S than the house K was, the house K
and the house A had the road 1 in between, and so on. Yet, he does not have
to apply additional operations to obtain these pieces of information. He obtains
them “for free,” thanks to the geometrical constraints governing the map. To
get the sense of utility of the free rides in this case, imagine how many deduction
steps would be needed if he tried to obtain the same results with pure thought
or sentences on the basis of the principles of geometry.

Free rides occur with simpler, purely diagrammatic surrogates. Consider the
following scenarios:

Scenario 2 A logic students uses Venn diagrams to check the validity of the
following syllogisms: All Cs are Bs. No Bs are As, Therefore no Cs are As. He
draws three (partially overlapping) circles on a sheet of paper, and labels them
“As,” “Bs,” and “Cs.” He represents the premises of the syllogism by shading
the complement of the B-circle with respect to the C-circle (figure 5) and then
shading the intersection of the B-circle and the A-circle (figure 6). He observes
that the intersection of the C-circle and the A-circle is shaded as a result. He
concludes that the syllogism is valid.
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As Bs

Cs

As Bs

Figure 5 Figure 6

Scenario 3 Another logic student uses Euler circles to solve the same problem.
She represents the premises by drawing a circle labeled “Cs” inside a circle
labeled “Bs” (figure 7), and drawing a circle labeled “As” completely outside
the B-circle (figure 8). She observes that the C-circle and the A-circle do not
overlap as a result. She concludes that the syllogism is valid.

Cs

Bs As
Cs

Bs

Figure 7 Figure 8

In each of these scenarios, the reasoner gets a free ride from the premises to
the conclusion of the syllogism—the student applies certain types of operation
to represent the premises in a diagram, and in virtue of the geometrical con-
straints, the diagram comes to bear the property that encodes the conclusion.
The relevant constraints are different in the two scenarios—in scenario 2, the
relevant constraint is one that governs the shadings of different areas of overlap-
ping circles, while in scenario 3, the relevant constraint is one that governs the
enclosure-disclosure relations among circles of different sizes. However, these
different constraints spare the logic students the same deduction steps—they
would have to go through two applications of modus ponens and a universal
generalization if they used standard first-order calculus.

We can describe these processes of free ride in general terms as follows:

1. To represent a set Θ1 of assumptions, a reasoner applies a sequence of op-
erations a1, . . . , an that realizes a set Σ1 of infons in a surrogate situation
sO.

2. In virtue of a local constraint Σ1 � {σ} holding on the surrogate domain,
the output situation sO is constrained to support an extra infon σ.

3. On the semantic convention ⇒ that the reasoner adopts, the surrogate
infon σ encodes a target infon θ. (The reasoner thus gets a free ride from
the assumptions Θ1 to a piece of information θ.)

16



Note that the constraint Σ � {σ} governing the surrogate domain plays a
crucial role in this process of free ride. To wit, suppose there were no non-trivial
geometrical constraints that govern the configurations of the wood blocks and
the lines on the map in scenario 1. Then putting the K block between the L
block and the M block would only result in the K block between the L and the
M block, and nothing else. No additional facts would hold on the map, and
hence no additional information could be read off from the map. Also, if the
blocks and the lines on the map should obey no regular constraints so that they
display different configurations every time the man applies the same operation,
then he could not use the map as a reliable aid for problem solving.

This observation leads us to consider the possibility of incorrect free rides.
The information the reasoner obtains “for free” at stage 3 may or may not be a
consequence of the assumptions that he started with. We call a free ride correct
if there is a (trivial or non-trivial) constraint on the target domain relative to
which the obtained “free” information is a consequence of the assumptions. A
free ride is incorrect if there is no such constraint on the target domain. Happily,
all the instances of free ride we have seen so far are all correct. The large amount
of information that the man reads off after putting the K block between the
L and the M block is a consequence of the assumptions that he has made in
constructing the map thus far. There are geometrical constraints that govern
the real houses, rivers, and roads that make the former a consequence of the
latter. The information the logic student reads off from the final Venn diagram
is a consequence of the assumptions that he has made in drawing the diagram.
There is a constraint governing the sets As, Bs, and Cs that makes the former
a consequence of the latter. Similarly for the case of Euler diagrams.

What is an example of incorrect free rides? Consider the following scenario:

Scenario 4 A dummy used in a car accident test has poor “biofidelty”—its
head, neck, throat, and knees are unfaithful to human counterparts in relevant
respects such as flex, extension, and fragility . Not knowing this defect, testers
assume that a certain type of car accident happens, and let a model accident
happen to this dummy in a test car. In virtue of the constraints that govern
the dummy and the test car, the dummies respond to the impact in a particular
way, which the testers interpret to obtain information about the consequence of
the assumed accident to a human body.

There is a sense in which the testers obtain this information by a free ride:
they apply certain operations to the dummy on the assumption that a certain
type of car accident happens. In virtue of a default constraint governing the
dummy, it enters into a surrogate situation that represents a piece of information
about the real accident. However, due to the poor biofidelty of the dummy, there
might not be any constraint governing real human bodies that justifies this
consequence. Thus, the free ride they get may well be incorrect. A similar case
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of incorrect free rides is possible in any process of simulation—what is generally
called “validity” of a simulation model is a special case of “correctness” of free
rides in surrogate reasoning.

Let us now turn to the notion of overdetermined alternatives. Consider the
following continuation of stage 3 of scenario 1.

Scenario 1, Stage 4 After putting the K block between the L block and
the M block, the man remembers that the house B was somewhere between
the house A and the house K. Before forgetting it again, he wants to represent
this information in his map by placing the B block between the A block and
the K block. However, this requires him to put the B block either between
the A block and the road line 1, or between the road line 1 and the L block,
or between the L block and the K block. He cannot decide which alternative
to take, since each alternative has its own semantic content that he does not
want to presume. Thus, he has to give up recording a precious fragment of his
memory in his map, until he obtains further information that allows him to take
a particular alternative.

In general terms, we can describe the phenomenon of overdetermined alter-
natives in the following way:

1. To represent a set Θ1 of assumptions, a reasoner applies a sequence oper-
ations a1, . . . , an that realizes a set Σ1 of infons in a surrogate situation
sO.

2. In virtue of a constraint Σ1 � Σ2 holding on the surrogate domain, the
output situation sO is constrained to support at least one of the alternative
infons Σ2.

3. On the semantic convention ⇒ that the reasoner adopts, each of these
alternative infons encodes a target infon θ that does not follow from the
initial assumptions Θ1 (that is, the constraint Θ1 � {θ} does not hold on
the target domain).

Note that the constraint Σ1 � Σ2 governing the surrogate domain plays a
crucial role in this phenomenon of overdetermined alternatives.

The trouble with an overdetermined alternative is that it prevents the rea-
soner from applying a certain type of operation without thereby choosing at
least one additional state of affairs to realize in the surrogate object. Since this
additional state of affairs encodes a piece of information that does not follow
from the reasoner’s initial assumptions, this amounts to a strengthening of his
original assumptions. This leads to the inflexibility of the surrogate reasoning in
question—by means of the default constraints that govern the surrogate domain,
the reasoner is prevented from representing a desired combination of assump-
tions into his source object. He is forced to represent additional assumptions in
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it, or give up representing the desired information in the first place. In a worst
scenario, the reasoner mistakes a consequence of the strengthened assumptions
for a consequence of his original assumptions. This is a case that is generally
called “an appeal to an accidental feature.”

Constraint projection

Our thesis in this paper is that most advantages and disadvantages of surrogate
reasoning can be explained with reference to the ways in which the default con-
straints on surrogates intervene in the process of problem solving. To illustrate
this claim, we have characterized two special cases of constraint-intervention,
free rides and overdetermined alternatives. Although these represent important
cases of constraint-intervention, they by no means exhaust all the possible cases.
It is time to indicate, in more general terms, how default constraints on surro-
gate objects can possibly intervene in the process of problem solving. This will
also let us state our thesis more clearly.

Let R = 〈T ,S,⇒,A,M〉 be a representation system, and let Θ1 � Θ2 be a
constraint that may or may not hold on the target domain T . We can distinguish
at least three distinct ways in which Θ1 � Θ2 might be “projected” onto our
target domain by the system.

Projection by the medium We say that the medium of R projects a con-
straint Θ1 � Θ2 if for every surrogate situation s ∈ S�, if s |⇒ Θ1 then
s |⇒ θ for some θ ∈ Θ2. In other words, if we work in the reasoning sys-
tem R, we cannot represent Θ1 in our surrogate situation without thereby
representing some θ ∈ Θ2; the local constraints on the surrogate domain
S prevent us doing so.

Projection by the actions We say that the actions of R project Θ1 � Θ2 if
for every sequence of actions a1, . . . , an, each of which is in A�, if sO is the
output situation of this sequence of actions and sO |⇒ Θ1, then sO |⇒ θ
for some θ ∈ Θ2. Thus, we cannot represent Θ1 in our surrogate situation
without thereby representing some θ ∈ Θ2, because of the restrictions
upon the actions that we can take. It is possible for the actions of R to
project a constraint without the medium of R doing so. Imagine that, as
a matter of physical restrictions on human bodies, all the actions we can
take to represent Θ1 also represent a member of Θ2. The constraints on
the surrogate domain is clearly not responsible.

Projection by the method We say that the method M projects Θ1 � Θ2 if
for every sequence of actions allowed by M, given the assumptions Θ1, if
sO is the result of this sequence of actions, then sO |⇒ θ for some θ ∈ Θ2.
Notice that it is not assumed that sO |⇒ Θ1, namely, the assumptions Θ1

may not be represented in the surrogate situation as a result of the actions
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in question. All that is required is that we apply certain operations in
accord with the method M, and then our surrogate enters into a situation
that represents an infon in Θ2. This notion of constraint projection covers
a wide range of cases such as the use of a calculator, a dummy driver in a
car test, a computer, and an expert.

When we employ a reasoning system R that projects a constraint Θ1 � Θ2

in any of these ways, our inference from the assumptions Θ1 to a member of Θ2

is partially taken over by a local constraint holding on our surrogate domain
or domain of actions. In the case of constraint projection by the medium, we
can simply “read off” a member of Θ2 (via the semantic convention ⇒) as soon
as we represent the information Θ1 in our surrogate situation—we do not have
to calculate out the implications of Θ with respect to some relevant system of
knowledge. We enjoy (or suffer from) the same transfer of inferential burden
in the case of constraint projection by the actions, although it is rooted in the
local constraints on the domain of actions. In the case of constraint projection
by the method, we must figure out what types of operations M allows us to
apply on the assumptions Θ1. Still, once we have applied one of the permitted
sequences of operations, the output situation lets us read off one of the infons
Θ2.

We believe that every practice of surrogate reasoning involves a constraint
projection in one of the above varieties, and a part of its inferential burden is
taken over by a constraint that governs the surrogates or the actions used in the
reasoning. Based upon this observation, our constraint hypothesis asserts that
the advantages and disadvantages of a practice of surrogate reasoning largely
depend on the fact that the reasoning systems allow the projection of constraints
in these various ways. In particular, using the notion of constraint projection, we
can explicate our earlier examples of free ride and overdetermined alternatives.

A free ride occurs when the reasoning system R projects a constraint of the
form Θ1 � {θ}, namely, a constraint whose consequent is a singleton. One could
consider various possibilities here, depending on how the constraint is projected,
by the medium, by the actions, or by the method of the system. The free ride
Θ1 � {θ} is correct if Θ1 � {θ} actually holds of the target domain. The use of a
map of the home town (scenario 1, stage 3), of Venn diagrams (scenario 2), and
of Euler diagrams (scenario 3) are all cases in which the medium of the adopted
reasoning systems project various constraints upon their target domains. The
projected constraints all actually hold on the target domains in the reasoning
systems, and the free rides are correct. The use of a dummy in the car test
(scenario 4) is a case in which a constraint is projected by the method of the
underlying reasoning system. The testers operate on the dummy according to
a certain method, and these operations make the dummy enter a situation that
represents something about the real situation of an accident. Unfortunately, the
projected constraint does not hold on the target domain of real accidents due to
the poor biofidelty of the dummy. The free ride that the testers get is incorrect.
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Overdetermined alternatives are imposed when a reasoning system projects
a constraint Θ1 � Θ2 while there is no θ ∈ Θ2 such that Θ1 � θ actually holds.
Notice that this can happen even if the projected constraint actually holds.
The difficulty is that the output situation sO of the reasoner’s action inevitably
represents an infon θ that does not follow from the assumptions Θ1. Again,
one can consider various possibilities here, depending on how the constraint is
projected, by the medium, by the actions, or by the method of the system. The
example we have seen (scenario 1, stage 4) is a case in which the medium of
the reasoning system projects a constraint Θ1 � Θ2. Although the projected
constraint holds on the target domain T of geographical situations of the actual
village, there is no θ ∈ Θ2 such that Θ1 � θ actually holds on T . So, as long
as the man tries to represent the assumptions Θ1 in the map, the map will
represent an extra piece of information θ ∈ Θ2 which does not follow from Θ1.

Thus, the cases of free rides and overdetermined alternatives are instances
of constraint projection allowed by a reasoning system. And indeed, these two
varieties of constraint projection explain the reliability and efficiency of many
systems of surrogate reasoning. The degree of reliability of a system depends
on the extent to which the free rides provided by the system are correct, that
is, the extent to which the constraints Θ1 � {θ} projected by the system in fact
hold of the target domain. The more that hold, the more reliable it is. The
degree of efficiency of a system depends on the set of free rides provided: if
system R2 projects all the constraints Θ1 � {θ} projected by R1, but not vice
versa, then, other things being equal, R2 will be more efficient than R1. There
is, of course, a tension between reliability and efficiency. The more efficient,
the more projected constraints, and so the greater possibility for the projected
constraints that do not actually hold of the target domain.

To add to this tension, the degree of reliability of a system also depends on
the cases of overdetermined alternatives imposed by the system, that is, the set
of projected constraints Θ1 � Θ2 such that no member of Θ2 follows from Θ1. If
system R2 projects all the “overdetermined” constraints Θ1 � Θ2 projected by
R1, but not vice versa, then, other things being equal, R2 will be less reliable
than R1.

Although the cases of free rides and overdetermined alternatives are impor-
tant varieties of constraint projection, they by no means exhaust all. Depending
on what we stipulate about the projected constraint and its relations to the se-
mantic convention, the method, the target domain, the surrogate domain, and
the domain of actions, we might be able to define other varieties of constraint
projection that provide illuminating criteria for the advantage and disadvantage
of particular reasoning systems.8 Thus, we are far from claiming that we have
provided a comprehensive set of such criteria. Instead, our constraint hypothesis
asserts more broadly that we can explain most advantages and disadvantages of

8For example, Shimojima (in press-b) contrasts the cases of free rides to what he calls the
cases of “half rides.” Although his paper does not make it explicit, the cases of half ride do
constitute a variety of constraint projection.
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particular systems of surrogate reasoning in this direction, by detailed studies
of different patterns of the constraint projection they offer.

Eventually, we wish to define the advantages and disadvantages of a reason-
ing system with respect to a specific task of problem solving. In other words,
we want the notion of suitedness of a reasoning system to particular tasks of
problem solving. In our view, this requires us to first define what constitutes a
valid solution of a problem, and what it is for a solution of a problem to rely on
a constraint Θ1 � Θ2 on the target domain. Unfortunately, it is not possible for
us to fully address these issues in this paper, and we must save our ambition for
a later opportunity.

Conclusions

In this paper we have suggested that the sort of analysis that has gone into the
study of formal logic can be extended from proofs using sentences in a formal
language to an incomparably richer and more important domain: that of people
using a variety of tools to reason about a variety of problem domains. As a
first step in this project, we have proposed the following thesis: the strength
and weakness of particular forms of surrogate reasoning are largely rooted in the
different ways in which default constraints governing surrogate objects intervene
in the process of problem solving. To substantiate this hypothesis, we have illus-
trated two special cases of constraint intervention, free rides and overdetermined
alternatives, and then introduced the notion of “constraint projection,” which
captures the general framework in which various forms of constraint intervention
take place in surrogate reasoning.

Our purpose here will be served if readers begin to explore some of the topics
that emerge when one takes seriously the empirically obvious fact that most
human reasoning of any real difficulty relies crucially on the use of tools external
to the target domain. We believe that the study initiated here will eventually
illuminate various cognitive models that seem to liken thinking processes to
the uses of external tools such as sentences, models, diagrams, pictures, and
machines. As long as the developers of those models draw any of their insights
from the actual uses of these tools, an explicit study of surrogate reasoning has
the potential to clarify, disentangle, and enrich the contents of the models being
developed.
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